IF: 2.7
5-year IF: 2.6
Editors-in-Chief
Wen-Hao Zhang
Bernhard Schmid
CN 10-1172/Q
ISSN 1752-9921(print)
ISSN 1752-993X(online)
  • Volume 17,Issue 2
    22 February 2024
      Jing Zhu, Xue-Lin Wang, Xing Jin, Lan Jiang, Hong-Yu Lin, Yang Hu, Jin-Fu Liu, Zhong-Sheng He
      2024, 17 (2): 1708589488360-159514800.
      Abstract ( 9 )   PDF(pc) (1347KB) ( 6 )   Save
      Variations in plant traits are indicative of plant adaptations to forest environments, and studying their relationships with tree growth provides valuable insights into forest regeneration. The spatial arrangement of plant seeds within the forest litter or soil critically influences the variations of root-leaf traits, thereby affecting the adaptive strategies of emerging seedlings. However, our current understanding of the impacts of individual root-leaf traits on seedling growth in different relative position, and whether these traits together affect growth, remains limited. This study focuses on the dominant tree species, Castanopsis kawakamii, within the Sanming C. kawakamii Nature Reserve of China. The present experiment aimed to examine the variations in root-leaf traits of seedling, focus on the relative positions of seeds within different layers: beneath or above the litter layer, or within the bare soil layer (without litter). Our findings provided evidence supporting a coordinated relationship between root and leaf traits, wherein leaf traits varied in conjunction with root traits in the relative positions of seeds. Specifically, we observed that seedlings exhibited higher values for specific leaf area and average root diameter, while displaying lower root tissue density. The mixed model explained 86.1% of the variation in root-leaf traits, surpassing the variation explained by the relative positions. Furthermore, soil nitrogen acted as a mediator, regulating the relationship between seedling growth and root-leaf traits, specifically leaf dry matter content and root tissue density. Therefore, future studies should consider artificially manipulating tree species diversity based on root-leaf traits characteristics to promote forest recovery.
  • Please wait a minute...
    Effects of water extract from Cornus controversa Hemsl. on the expression levels of DiSOC1-b and DiCCoAOMT1 genes related with the growth of dove tree seedlings
    Xiao-Yan Chen, Zheng-Chuan Liang, Yun Long, Ji-Hong Pan, Ting-Fa Dong, Qin-Song Liu, Xiao Xu
    doi: 10.1093/jpe/rtae009
    Abstract ( 3 )    PDF    Save
    Although characterization of plant interactions has become a research hotspot to assess the adaptability of endangered plants, the underlying molecular basis remains elusive. Dove tree (Davidia involucrata Baill.) seedlings were watered with distilled water (CK), leaf water extract (0.025 g mL-1) and branch water extract (0.1 g mL-1) from Cornus controversa, respectively. Subsequently, the morphology, biomass and gene expression levels of DiSOC1-b and DiCCoAOMT1 were analyzed. The results showed that morphological traits and biomass accumulation of D. involucrata seedlings were decreased by the addition of leaf water extracts, and increased by branch water extracts. Moreover, the gene expression level of DiSOC1-b was significantly down-regulated, while the gene expression level of DiCCoAOMT1 was significantly up-regulated in the stems and roots of D. involucrata upon treatment with leaf water extracts of C. controversa. In contrast, the gene expression level of DiSOC1-b was significantly up-regulated in the leaves and stems, while the gene expression level of DiCCoAOMT1 was significantly down-regulated in the roots of D. involucrata upon treatment with branch water extracts of C. controversa. In addition, the expression level of DiSOC1-b was positively correlated with most of morphological traits and total biomass (P < 0.05), while DiCCoAOMT1 was negatively correlated with the majority of morphological traits in D. involucrata seedlings (P < 0.05). Taken together, these results suggest that water extracts from the leaves and branches of the C. controversa exhibit opposite allelopathic effects and affect the expression levels of genes related to growth (DiSOC1-b) and environmental adaptability (DiCCoAOMT1) in D. involucrata seedlings.
    Parameterization of Height-Diameter and Crown Radius-Diameter Relationships Across the Globe
    Xiang Song, Jinxu Li, Xiaodong Zeng
    doi: 10.1093/jpe/rtae005
    Abstract ( 3 )    PDF    Save
    The tree height-diameter at breast height (H-DBH) and crown radius-DBH (CR-DBH) relationships are key for forest carbon/biomass estimation, parameterization in vegetation models and vegetation-atmosphere interactions. Although the H-DBH relationship has been widely investigated on site or regional scales, and a small amount of studies have involved CR-DBH relationships based on plot-level data, few studies have quantitatively verified the universality of these two relationships on a global scale. Accordingly, this study first evaluated the ability of 29 functions to fit the H-DBH and CR-DBH relationships for six different plant functional types (PFTs) on a global scale, based on a global plant trait database. Results showed that most functions were able to capture the H-DBH relationship for tropical PFTs and boreal needleleaf trees relatively accurately, but slightly less so for temperate PFTs and boreal broadleaf trees. For boreal PFTs, the S-shaped Logistic function fitted the H-DBH relationship best, while for temperate PFTs the Chapman-Richards function performed well. For tropical needleleaf trees, the fractional function of DBH could satisfactorily capture the H-DBH relationship, while for tropical broadleaf trees, the Weibull function and a composite function of fractions were the best choices. For CR-DBH, the fitting capabilities of all the functions were comparable for all PFTs except boreal broadleaf trees. The Logistic function performed best for two boreal PFTs and temperate broadleaf trees, but for temperate needleleaf trees and two tropical PFTs, some exponential functions demonstrated higher skill. This work provides a valuable foundation for parameterization improvements in vegetation models, and some clues to forest field investigations.
    Comparison of the timing of spring phenological events between phenological garden trees and wild populations
    Calum J. Sweeney, Fidelma Butler, Astrid Wingler
    doi: 10.1093/jpe/rtae008
    Abstract ( 3 )    PDF    Save
    Phenological research is engaged in monitoring the influence of climate change on the natural environment. The International Phenological Gardens (IPG) network provides a valuable dataset of standardised tree phenology records dating back to the mid-20th century. To make best use of this actively growing record, it is important to investigate how network data can be applied to predict the timing of phenological events in natural populations. This study compared clonally propagated IPG downy birch (Betula pubescens Ehrh.) and hazel (Corylus avellana L.) specimens of central European provenance to nearby wild populations at the western-most margin of the IPG network, in the south-west of Ireland. In addition to monitoring by trained scientists, observations by citizen scientists were included. The order of the timing of phenological events among sites was consistent across two years, confirming reproducibility of the results. IPG trees had the earliest B. pubescens leaf unfolding and C. avellana flowering dates of the sites studied. In addition, leaf unfolding occurred later in the wild populations than expected from the temperature responses of the B. pubescens and C. avellana IPG clones. Natural variation in phenology also exceeded the historical change observed at the IPG site, suggesting a potential genetic basis for climate adaptation. Trunk circumference, reflecting the age-dependent increase in tree size, was found to influence C. avellana phenology, with earlier timing of phenological events in larger trees. This highlights tree size as an important consideration in the management of phenological gardens and tree phenology research in general.
  • 2024, Vol. 17 No.1
    2023, Vol. 16 No.6 No.5 No.4 No.3 No.2 No.1
    2022, Vol. 15 No.6 No.5 No.4 No.3 No.2 No.1
    2021, Vol. 14 No.6 No.5 No.4 No.3 No.2 No.1
    2020, Vol. 13 No.6 No.5 No.4 No.3 No.2 No.1
    2019, Vol. 12 No.6 No.5 No.4 No.3 No.2 No.1
    2018, Vol. 11 No.6 No.5 No.4 No.3 No.2 No.1
    Free
    2017, Vol. 10 No.6 No.5 No.4 No.3 No.2 No.1
    Free
    2016, Vol. 9 No.6 No.5 No.4 No.3 No.2 No.1
    2015, Vol. 8 No.6 No.5 No.4 No.3 No.2
    Free
    No.1
    2014, Vol. 7 No.6 No.5 No.4 No.3 No.2
    Free
    No.1
    2013, Vol. 6 No.6 No.5
    Free
    No.4 No.3 No.2 No.1
    2012, Vol. 5 No.4 No.3 No.2 No.1
    Free
    2011, Vol. 4 No.4 No.3 No.1-2
    Free
    2010, Vol. 3 No.4 No.3 No.2 No.1
    Free
    2009, Vol. 2 No.4
    Free
    No.3 No.2 No.1
    2008, Vol. 1 No.4 No.3 No.2 No.1
Highly Cited Articles
Special Issue

Editor’s Choice

Effects of tree mycorrhizal type on soil respiration and carbon stock via fine root biomass and litter dynamic in tropical plantations
Guodong Zhang, Guiyao Zhou, Xuhui Zhou, Lingyan Zhou, Junjiong Shao, Ruiqiang Liu, Jing Gao, Yanghui He, Zhenggang Du, Jianwei Tang and Manuel Delgado-Baquerizo
Effect of genotypic richness, drought and mycorrhizal associations on productivity and functional traits of a dominant C4 grass
Smriti Pehim Limbu and Meghan L. Avolio
Accelerated warming in the late 20th century promoted tree radial growth in the Northern Hemisphere
Jie Liu, Zong-Shan Li, Maierdang Keyimu, Xiaochun Wang, Haibin Liang, Xiaoming Feng, Guangyao Gao and Bojie Fu