Editor’s Choice
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of tree mycorrhizal type on soil respiration and carbon stock via fine root biomass and litter dynamic in tropical plantations
Guodong Zhang, Guiyao Zhou, Xuhui Zhou, Lingyan Zhou, Junjiong Shao, Ruiqiang Liu, Jing Gao, Yanghui He, Zhenggang Du, Jianwei Tang and Manuel Delgado-Baquerizo
J Plant Ecol    2023, 16 (1): 0.   DOI: 10.1093/jpe/rtac056
Abstract7)      PDF       Save
热带森林是高生产力但同时也是脆弱的生态系统之一。一些全球范围的造林项目计划未来十年在热带地区种植数百万棵树。树种菌根类型影响森林土壤碳储存已成为共识,但在热带地区,树种菌根类型如何影响土壤呼吸(Rs)和碳储存,目前仍知之甚少。为研究树种菌根类型对Rs和土壤碳储存的影响,本实验在一个近30年热带同质园的3种丛枝菌根(AM)树种和3种外生菌根(EM)树种的单种林中,测量了其Rs和表层20 cm的碳含量,以及有关的生物因子(如根生物量、凋落物动态、土壤微生物)和非生物因子(如微气候)。研究结果表明,AM单种林的Rs、土壤碳含量,以及凋落物周转速率和细根生物量显著高于EM单种林。分析表明,与其他生物和非生物因子比较,树种菌根类型对Rs和土壤碳含量的影响最大。进一步分析表明,菌根类型是通过细根生物量和凋落物动态(凋落物产量、凋落物现存量、凋落物周转速率)直接和间接影响Rs和土壤碳含量。本研究结果强调了树种菌根类型对森林碳循环的影响,表明在热带地区种植AM树种可能比种植EM树种更能促进土壤固碳。

Related Articles | Metrics
Effect of genotypic richness, drought and mycorrhizal associations on productivity and functional traits of a dominant C4 grass
Smriti Pehim Limbu and Meghan L. Avolio
J Plant Ecol    2023, 16 (1): 0.   DOI: 10.1093/jpe/rtac045
Abstract2)      PDF       Save

While the relationship between genetic diversity and plant productivity has been established for many species, it is unclear whether environmental conditions and biotic associations alter the nature of the relationship. To address this, we investigated the interactive effects of genotypic diversity, drought and mycorrhizal association on plant productivity and plant traits. Our mesocosm study was set up at the Konza Prairie Biological Research Station, located in the south of Manhattan, Kansas. Andropogon gerardii, the focal species for our study, was planted in two levels of genotypic richness treatment: monoculture or three-genotype polyculture. A rainout shelter was constructed over half of the experimental area to impose a drought and Thiophanate-methyl fungicide was used to suppress arbuscular mycorrhizal fungi in selected pots within each genotypic richness and drought treatment. Genotypic richness and mycorrhizal association did not affect above-ground biomass of A. gerardii. Drought differentially affected the above-ground biomass, the number of flowers and bolts of A. gerardii genotypes, and the biomass and the functional traits also differed for monoculture versus polyculture. Our results suggest that drought and genotypic richness can have variable outcomes for different genotypes of a plant species.

Related Articles | Metrics
Accelerated warming in the late 20th century promoted tree radial growth in the Northern Hemisphere
Jie Liu, Zong-Shan Li, Maierdang Keyimu, Xiaochun Wang, Haibin Liang, Xiaoming Feng, Guangyao Gao and Bojie Fu
J Plant Ecol    2023, 16 (1): 0.   DOI: 10.1093/jpe/rtac077
Abstract4)      PDF       Save

Accelerated global warming in the late 20th century led to frequent forest-decline events in the Northern Hemisphere and increased the complexity of the relationships between tree growth and climate factors. However, few studies have explored the heterogeneity of responses of tree growth to climate factors in different regions of the Northern Hemisphere before and after accelerated warming. In this study, a total of 229 temperature-sensitive tree-ring width chronologies from nine regions on three continents in the Northern Hemisphere were used in the data analysis performed herein. A bootstrapped correlation analysis method was used to investigate whether the tree growth-climate response changed significantly in different regions between the periods before and after rapid warming. Probability density functions and piecewise linear fitting were used to study the fluctuation characteristics of the tree-ring width indices before and after rapid warming. At the end of the 20th century (from 1977 to 2000), rapid warming significantly promoted the radial growth of trees in different regions of the Northern Hemisphere, but tree radial growth was heterogeneous among the different regions from 1950 to 2000. After 1976, except in central North America and northern Europe, the correlation between tree growth and temperature increased significantly in the Northern Hemisphere, especially in Asia. From 1977 to 2000, tree-ring index and temperature divergences were observed in nine regions with a divergence of 2–5 years. From 1950 to 2000, tree growth tracked better average temperature variability in the Northern Hemisphere than regional temperature.

Related Articles | Metrics
Are the well-fed less thirsty? Effects of drought and salinity on New Zealand mangroves
Sridevi Ravi, Martin K.-F. Bader, Tim Young, Mark Duxbury, Michael Clearwater, Cate Macinnis-Ng and Sebastian Leuzinger
J Plant Ecol    2022, 15 (1): 85-99.   DOI: 10.1093/jpe/rtab071
Abstract79)      PDF       Save

Despite a large number of studies examining the effects of abiotic stress factors on plants, the mechanistic explanations of drought-induced tree mortality remain inconclusive and even less is known about how multiple stressors interact. The role of non-structural carbohydrates (NSCs) in preventing or postponing drought mortality is gaining attention. Here, we tested the role of NSCs in mitigating the effects of drought and salinity in New Zealand mangroves, Avicennia marina subsp. australasica. We experimentally manipulated plant NSC levels, prior to subjecting them to combinations of drought and salinity. Plant growth and survival rates were 2- and 3-fold higher in the high-NSC (H-NSC) group than in the low-NSC (L-NSC) group under high salinity and drought conditions, respectively. After 12 weeks under high salinity–high drought conditions, the H-NSC group showed higher stem hydraulic conductivity (281 ± 50 mmol cm−1 s−1 MPa−1) compared with the L-NSC group (134 ± 40 mmol cm−1 s−1 MPa−1). Although starch levels remained relatively constant, we found a 20% increase in soluble sugars in the stems of H-NSC group under high drought and high salinity in week 8 compared with week 12. Our results suggest (i) an important role of NSCs in mitigating the effects of low soil water potential caused by drought and salinity, and (ii) sink-limited growth under conditions of combined salinity and drought.

Related Articles | Metrics
Spatial patterns and determinants of Moraceae richness in China
Hua-Feng Wang, Xiaoting Xu, Xia-Lan Cheng, Yunpeng Liu, Ao Luo, Tong Lyu, Wen-Long Wang, Mir Muhammad Nizamani, Zhiheng Wang
J Plant Ecol    2022, 15 (6): 1142-1153.   DOI: 10.1093/jpe/rtac025
Abstract19)      PDF (1074KB)(15)       Save
Understanding large-scale patterns of biodiversity and their drivers remains central in ecology. Many hypotheses have been proposed, including hydrothermal dynamic hypothesis, tropical niche conservatism hypothesis, Janzen’s hypothesis and a combination model containing energy, water, seasonality and habitat heterogeneity. Yet, their relative contributions to groups with different lifeforms and range sizes remain controversial, which have limited our ability to understand the general mechanisms underlying species richness patterns. Here we evaluated how lifeforms and species range sizes influenced the relative contributions of these three hypotheses to species richness patterns of a tropical family Moraceae. The distribution data of Moraceae species at a spatial resolution of 50 km × 50 km and their lifeforms (i.e. shrubs, small trees and large trees) were compiled. The species richness patterns were estimated for the entire family, different life forms and species with different range sizes separately. The effects of environmental variables on species richness were analyzed, and relative contributions of different hypotheses were evaluated across life forms and species range size groups. The species richness patterns were consistent across different species groups and the species richness was the highest in Sichuan, Guangzhou and Hainan provinces, making these provinces the hotspots of this family. Climate seasonality is the primary factor in determining richness variation of Moraceae. The best combination model gave the largest explanatory power for Moraceae species richness across each group of range size and life forms followed by the hydrothermal dynamic hypothesis, Janzen’s hypothesis and tropical niche conservatism hypothesis. All these models has a large shared effects but a low independent effect (< 5%), except rare species. These findings suggest unique patterns and mechanisms underlying rare species richness and provide a theoretical basis for protection of the Moraceae species in China.
Related Articles | Metrics
No evidence of a generalized potential ‘cost’ of apical dominance for species that have strong apical dominance
Jenna V Finley, Lonnie W Aarssen
J Plant Ecol    2022, 15 (6): 1168-1184.   DOI: 10.1093/jpe/rtac053
Abstract12)      PDF (582KB)(7)       Save
When the shoot apical meristem of plants is damaged or removed, fecundity and/or plant growth may suffer (under-compensation), remain unaffected (compensation) or increase (overcompensation). The latter signifies a potential ‘cost’ of apical dominance. Using natural populations of 19 herbaceous angiosperm species with a conspicuously vertical, apically dominant growth form, we removed (clipped) the shoot apical meristem for replicate plants early in the growing season to test for a potential cost of apical dominance. Clipped and unclipped (control) plants had their near neighbours removed, and were harvested after flowering production had finished but before seed dispersal. Dry mass was measured separately for aboveground body size (shoots), leaves, seeds and fruits; and number of leaves, fruits and seeds per plant were counted. We predicted that: (i) our study species (because of their strong apically dominant growth form) would respond to shoot apical meristem removal with greater branching intensity, and thus overcompensation in terms of fecundity and/or biomass; and (ii) overcompensation is particularly enabled for species that produce smaller but more leaves, and hence with a larger bud bank of axillary meristems available for deployment in branching and/or fruit production. Widely variable compensatory capacities were recorded, and with no significant between-species relationship with leaf size or leafing intensity—thus indicating no generalized potential cost of apical dominance. Overall, the results point to species-specific treatment effects on meristem allocation patterns, and suggest importance for effects involving local variation in resource availability, and between-species variation in phenology, life history traits and susceptibility to herbivory.
Related Articles | Metrics
Additive effects of warming and grazing on fine-root decomposition and loss of nutrients in an alpine meadow
Yang Zhou, Wang-Wang Lv, Shi-Ping Wang, Li-Rong Zhang, Jian-Ping Sun, Li-Li Jiang, Pei-Pei Liu, Qi Wang, Bo-Wen Li, A. Wang, Huan Hong, Su-Ren Zhang, Lu Xia, Nan Ji, Zheng-Xin Xie, Cai-Yun Luo, Zhen-Hua Zhang, Chang-Hui Wang, Jin-Zhi Wang, Ci Yang and Tsechoe Dorji
J Plant Ecol    2022, 15 (6): 1273-1284.   DOI: 10.1093/jpe/rtac027
Abstract19)      PDF       Save

Fine-root decomposition is a critical process regulating ecosystem carbon cycles and affecting nutrient cycling and soil fertility. However, whether interaction between warming and grazing affects fine-root decomposition is still under-researched in natural grasslands. A two-factorial experiment with asymmetric warming (i.e. daytime vs. nighttime and growing season vs. nongrowing season) and moderate grazing (i.e. about average 50% forage utilization rate) was conducted to explore whether warming and grazing affect fine-root decomposition and loss of nutrients during a 2-year decomposition period in an alpine meadow on the Tibetan Plateau. Both warming and grazing facilitated carbon cycling through increase in fine-root decomposition, and influenced element cycling which varies among elements. The effects of warming and grazing on fine-root decomposition and loss of nutrients were additive. Both warming and grazing significantly increased cumulative percentage mass loss and total organic carbon loss of fine roots during the 2-year experiment. Only warming with grazing treatment reduced percentage nitrogen loss, whereas warming, regardless of grazing, decreased percentage phosphorus loss. Warming and grazing alone increased percentage loss of potassium, sodium, calcium and magnesium compared with control. There were no interactions between warming and grazing on fine-root decomposition and loss of nutrients. There was greater temperature sensitivity of decreased phosphorus loss than that of decreased nitrogen loss. Different temperature sensitivities of percentage loss of nutrients from fine-root decomposition would alter ratios of the available nutrients in soils, and may further affect ecosystem structure and functions in future warming.

Related Articles | Metrics
The importance of ecotype diversity on duckweed growth with and without salt stress
Sofa J. van Moorsel
J Plant Ecol    2022, 15 (5): 1065-1079.   DOI: 10.1093/jpe/rtac054
Abstract15)      PDF       Save

The pollution of freshwater ecosystems is threatening freshwater plant species diversity worldwide. Freshwater plants, such as the common duckweed (Lemna minor), are potentially sensitive to novel stressful environments. To test if ecotype diversity could increase resistance to stressful environments, I used seven L. minor populations and measured their growth rates with and without moderate salt stress across an ecotype diversity gradient. The L. minor populations were grown over 5 months in 92 experimental mesocosms, either in ecotype monocultures or in polyculture with either one or three conspecific ecotypes (23 unique compositions). After growing the duckweed in unperturbed conditions (phase 1), the cultures were subjected to moderate salt stress (50 mmol/L NaCl) for several weeks (phase 2). The experiment was conducted in the presence of the natural epimicrobial community associated with the different ecotypes. In phase 2, a subset of these algae added an unintentional second stressor to the experiment. The ecotypes differed in their growth rates, the fastest growing at twice the rate of others. The diversity context further shaped the ecotype growth rates. Ecotype polycultures showed higher abundances towards the end of the experiment, thus over time, as the environment deteriorated, ecotype diversity gained in importance. These findings show that within-species variation in growth rates can translate to a positive effect of ecotype diversity on population abundance. Exposure of L. minor to moderate salt levels did not significantly impact growth rates, although the effect may have been masked by reduced algal stress in the saline environments.

Related Articles | Metrics
Arbuscular mycorrhizal fungi protect a subtropical tree species exposed to simulated acid rain by accelerating photosynthetic ability, antioxidant enzymes and osmolyte accumulation
Yanhong Wang, Changliang Shao, Yajing Qiu, Shuquan Yu, Lina Xia, Xiaobin He, Aiping Wu and Naili Zhang
J Plant Ecol    2022, 15 (5): 1036-1048.   DOI: 10.1093/jpe/rtac036
Abstract15)      PDF       Save

Acid rain (AR), which occurs frequently in southern China, negatively affects the growth of subtropical tree species. Arbuscular mycorrhizal fungi (AMF) mitigate the detrimental effects induced by AR. However, the mechanisms by which AMF protect Zelkova serrata, an economically important tree species in southern China, from AR stress remain unclear. We conducted a greenhouse experiment in which Z. serrata plants were inoculated with AMF species Rhizophagus intraradices and Diversispora versiformis, either alone or as a mixed culture, or with a sterilized inoculum (negative control). The plants were subjected to three levels of simulated sulfuric AR and nitric AR (pH 2.5, 4.0 and 5.6) to examine any interactive effects on growth, photosynthetic capabilities, antioxidant enzymes, osmotic adjustment and soil enzymes. AR significantly decreased dry weight, chlorophyll content, net photosynthetic rate and soluble protein (SP) of non-mycorrhizal plants. Mycorrhizal inoculation, especially a combination of R. intraradices and D. versiformis, notably improved dry weight, photosynthetic capabilities, catalase, peroxidase, superoxide dismutase, SP and root acid phosphatase activity of Z. serrata under harsh AR stress. Moreover, the benefits from AMF symbionts depended on the identity of AM fungal species and the gradient of AR stress. Our results indicate that AM fungi protect Z. serrata against AR stress by synchronously activating photosynthetic ability, antioxidant enzymes and osmolyte accumulation. These findings suggest that a combination of R. intraradices and D. versiformis may be a preferable choice for culturing Z. serrata in southern China.

Related Articles | Metrics
Seasonal and interannual variations of ecosystem photosynthetic characteristics in a semi-arid grassland of Northern China
Cuihai You, Yanbing Wang, Xingru Tan, Bingwei Zhang, Tingting Ren, Boyu Chen, Mengzhen Xu and Shiping Chen
J Plant Ecol    2022, 15 (5): 961-976.   DOI: 10.1093/jpe/rtac065
Abstract15)      PDF (4131KB)(18)       Save

The ecosystem apparent quantum yield (α), maximum rate of gross CO2 assimilation (Pmax) and daytime ecosystem respiration rate (Rd), reflecting the physiological functioning of ecosystem, are vital photosynthetic parameters for the estimation of ecosystem carbon budget. Climatic drivers may affect photosynthetic parameters both directly and indirectly by altering the response of vegetation. However, the relative contribution and regulation pathway of environmental and physiological controls remain unclear, especially in semi-arid grasslands. We analyzed seasonal and interannual variations of photosynthetic parameters derived from eddy-covariance observation in a typical semi-arid grassland in Inner Mongolia, Northern China, over 12 years from 2006 to 2017. Regression analyses and a structural equation model (SEM) were adopted to separate the contributions of environmental and physiological effects. The photosynthetic parameters showed unimodal seasonal patterns and significantly interannual variations. Variations of air temperature (Ta) and soil water content (SWC) drove the seasonal patterns of photosynthetic parameters, while SWC predominated their interannual variations. Moreover, contrasting with the predominant roles of Ta on α and Rd, SWC explained more variance of Pmax than Ta. Results of SEM revealed that environmental factors impacted photosynthetic parameters both directly and indirectly through regulating physiological responses reflected by stomatal conductance at the canopy level. Moreover, leaf area index (LAI) directly affected α, Pmax and Rd and dominated the variation of Pmax. On the other hand, SWC influenced photosynthetic parameters indirectly through LAI and canopy surface conductance (gc). Our findings highlight the importance of physiological regulation on the photosynthetic parameters and carbon assimilation capacity, especially in water-limited grassland ecosystems.

Related Articles | Metrics
Comparison of pretreatment, preservation and determination methods for foliar pH of plant samples
Sining Liu, Jiashu Chen and Wenxuan Han
J Plant Ecol    2022, 15 (4): 673-682.   DOI: 10.1093/jpe/rtac012
Abstract64)      PDF       Save
To compare current methods of pretreatment/determination for plant foliar pH, we proposed a method for long-period sample preservation with little interference with the stability of foliar pH. Four hundred leaf samples from 20 species were collected and four methods of pH determination were used: refrigerated (stored at 4 °C for 4 days), frozen (stored at −16 °C for 4 days), oven-dried and fresh green-leaf pH (control). To explore the effects of different leaf:water mixing ratio on the pH determination results, we measured oven-dried green-leaf pH by leaf:water volume ratio of 1:8 and mass ratio of 1:10, and measured frozen senesced-leaf pH by mass ratio of 1:10 and 1:15. The standard major axis regression was used to analyze the relationship and the conversion equation between the measured pH with different methods. Foliar pH of refrigerated and frozen green leaves did not significantly differ from that of fresh green-leaf, but drying always overrated fresh green-leaf pH. During the field sampling, cryopreservation with a portable refrigerator was an advisable choice to get a precise pH. For long-duration field sampling, freezing was the optimal choice, and refrigeration is the best choice for the short-time preservation. The different leaf:water mixing ratio significantly influenced the measured foliar pH. High dilution reduced the proton concentration and increased the measured pH. Our findings provide the conversion relationships between the existing pretreatment and measurement methods, and establish a connection among pH determined by different methods. Our study can facilitate foliar pH measurement, thus contributing to understanding of this interesting plant functional trait.
Related Articles | Metrics
Coloration and phenology manifest nutrient variability in senesced leaves of 46 temperate deciduous woody species
Xingchang Wang, Qi Wang, Yue Chen, Rui Zhao, Jiahui Zhang, Xiankui Quan, Fan Liu and Chuankuan Wang
J Plant Ecol    2022, 15 (4): 700-710.   DOI: 10.1093/jpe/rtab105
Abstract53)      PDF       Save
Senesced-leaf nutrient concentrations vary significantly among coexisting plant species reflecting different leaf nutrient use strategies. However, interspecific variation in senesced-leaf nutrients and its driving factors are not well understood. Here, we aimed to determine interspecific variation and its driving factors in senesced-leaf nutrients. We explored interspecific variation in carbon (C), nitrogen (N) and phosphorus (P) concentrations in newly fallen leaves of 46 coexisting temperate deciduous woody species across the Maoershan Forest Ecosystem Research Station, Northeast China. The relative importance of 10 biotic factors (i.e. mycorrhiza type, N-fixing type, growth form, shade tolerance, laminar texture, coloring degree, coloring type, peak leaf-coloration date, peak leaf-fall date and end leaf-fall date) was quantified with the random forest model. N and P concentrations varied 4- and 9-fold among species, respectively. The high mean N (15.38 mg g−1) and P (1.24 mg g−1) concentrations suggested a weak N and P limitation in the studied forest. Functional groups had only significant effects on specific nutrients and their ratios. P concentration and N:P were negatively correlated with peak and end leaf-fall dates for the ectomycorrhiza species group. Brighter-colored leaves (red > brown > yellow > yellow-green > green) tended to have lower N and P concentrations and higher C:N and C:P than darker-colored leaves. The random forest model showed that autumn coloration and leaf-fall phenology contributed 80% to the total explanation of nutrient variability among species. The results increase our understanding of the variability in senesced-leaf nutrients as a strategy of woody plant nutrition in temperate forests.
Related Articles | Metrics
Are regional precipitation–productivity relationships robust to decadal-scale dry period?
Zhongmin Hu, Minqi Liang, Alan Knapp, Jianyang Xia, and Wenping Yuan
J Plant Ecol    2022, 15 (4): 711-720.   DOI: 10.1093/jpe/rtac008
Abstract48)      PDF       Save
Precipitation (PPT) is the primary climatic determinant of plant growth and aboveground net primary productivity (ANPP) for many of the world’s major terrestrial ecosystems. Thus, relationships between PPT and productivity can provide insight into how changes in climate may alter ecosystem functions globally. Spatial PPT–ANPP relationships for grasslands are found remarkably similar around the world, but whether and how they change during periods of extended climatic anomalies remain unknown. Here, we quantified how regional-scale PPT-ANPP relationships vary between an extended wet and a dry period by taking advantage of a 35-year record of PPT and NDVI (as a surrogate for ANPP) at 1700 sites in the temperate grasslands of northern China. We found a sharp decrease in the strength of the spatial PPT–ANPP relationship during an 11-year period of below average PPT. We attributed the collapse of this relationship to asynchrony in the responses of different grassland types to this decadal period of increased aridity. Our results challenge the robustness of regional PPT–productivity if aridity in grasslands is increased globally by climate change.
Related Articles | Metrics
Exploration of the response of soil properties and plant species composition to centuries-old traditional meadow irrigation
Rebekka Gerlach, Constanze Buhk, Jens Schirmel, Hermann F. Jungkunst
J Plant Ecol    2023, 16 (2): 0.   DOI: 10.1093/jpe/rtac072
Abstract8)      PDF (852KB)(1)       Save
Only targeted and sustainable management will preserve extensively managed grasslands, one of Europe's most species-rich habitats. Traditionally, largely abandoned irrigation might prove a sustainable management strategy, but the understanding of the interactions among irrigation, soil properties and plant species are low for a generally humid ecoregion. We aimed at advancing our understanding of plant ecology by disentangling plant community responses to traditional lowland meadow irrigation from traditionally low fertilization rates. We studied plant composition and diversity jointly with the underlying links to soil properties (Corg, total N, water holding capacity and mesofaunal activity) and soil nutrients (Nmin, P, K, Mg and B). In a field study, we compared 13 long-term traditionally irrigated and 13 non-irrigated (17 fertilized and 9 non-fertilized) meadows. We surveyed plant diversity, composition and soil nutrients as well as soil properties for 1 year assuming low annual variation. Irrigation and fertilization led to differences in soil properties and soil nutrients without impact on sheer plant species diversity but on plant species composition. Finer grain sizes due to siltation increased water holding capacity and nutrient storage. Hence, resource-acquisitive graminoid species had advantages in irrigated meadows. Thus, irrigation is not only a mean to preserve biodiversity of extensively used meadows of Central Europe but may prove a tool to differentiate between plant functional traits.
Related Articles | Metrics
A comparative study reveals the key biological traits causing bioinvasion differences among four alien species of genus Veronica in China
Yujing Liu, Hairong Wu, Congyan Wang, Jiliang Cheng, Sheng Qiang
J Plant Ecol    2023, 16 (2): 0.   DOI: 10.1093/jpe/rtac068
Abstract9)      PDF (905KB)(0)       Save
The four alien farmland weeds of genus Veronica (i.e. V. arvensis, V. didyma, V. hederifolia and V. persica) have successfully colonized in China, but caused different ecological consequences in the colonized habitats. However, the key biological traits conferring bioinvasion differences under different light conditions among the four alien species of Veronica remain unknown. A comprehensive contrastive analysis experiment was conducted to assess the contribution of the intensity of photosynthetic and sexual and asexual reproductive traits of the four alien Veronica weeds to their invasion level in both field trial and laboratory. The field survey showed that V. persica had the highest invasion level, followed by V. didyma, V. hederifolia and V. arvensis. Their invasiveness was mainly attributed to photosynthetic-related parameters (LMA) and asexual reproduction traits (the ratio of adventitious roots) out of all the 22 tested indexes. The photosynthetic-related and some asexual reproduction indexes from separate determinations under both sun and shade conditions showed that V. persica was able to adapt to strong illumination but was more tolerant of shade than the other species. This adaptive differentiation to illumination conferred different competitiveness over crops on the four alien Veronica weeds by allocating resources to the biomass of each organ in farmland. It may be concluded that the adaptability to illumination conditions and the asexual reproduction traits may endow their successful invasion and become different important farmland weeds.
Related Articles | Metrics
Recent greening of grasslands in northern China driven by increasing precipitation
Kai Di, Zhongmin Hu, Mei Wang, Ruochen Cao, Minqi Liang, Genan Wu, Ruru Chen, Guangcun Hao and Yaolong Zhao
J Plant Ecol    2021, 14 (5): 843-853.   DOI: 10.1093/jpe/rtab036
Abstract112)      PDF       Save

Recent warmer and wetter climate in northern China remains a hot topic in recent years, yet its effect on vegetation growth has not been fully understood. This study investigated the temporal change of vegetation cover and its correlations with climatic variables from 1982 to 2018 for grasslands in northern China. Our aim is to clarify whether the warmer and wetter climate in recent years drives the greening of the vegetation in this region.


We investigated the temporal dynamic of vegetation normalized difference vegetation index (NDVI) and its driving forces based on long time-series data. Piecewise regression was used to examine whether there was a turning point of the trend of NDVI and climatic variables. Pearson correlation analyses were conducted to quantify the relationship between NDVI and climatic factors. Stepwise multivariable regression was used to quantify the contributions of climate variables to the temporal variations in NDVI.

Important Findings

We found a turning point of NDVI trend in 2008, with GIMMS NDVI indicating a slight increase of 0.00022 yr−1 during 1982–2008 to an increase of 0.002 yr−1 for GIMMS NDVI during 2008–2015 and 0.0018 yr−1 for MODIS NDVI during 2008–2018. Precipitation was the predominant driver, and air temperature and vapor pressure deficit exerted a minor impact on the temporal dynamics of NDVI. Overall, our results suggest a turning point of NDVI trend, and that recent warmer and wetter climate has caused vegetation greening, which provides insights for better predicting the vegetation cover in this region under changing climate.

Related Articles | Metrics
The need for alternative plant species interaction models
Christian Damgaard, and Jacob Weiner
J Plant Ecol    2021, 14 (5): 771-780.   DOI: 10.1093/jpe/rtab030
Abstract146)      PDF       Save

The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years. Three of the problems that have been identified are (i) the absence of frequency-dependence, which is important for long-term coexistence of species, (ii) the need to take unmeasured (often unmeasurable) variables influencing individual performance into account (e.g. spatial variation in soil nutrients or pathogens) and (iii) the need to separate measurement error from biological variation.


We modified the classical Lotka–Volterra competition models to address these limitations. We fitted eight alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris over 3 years in an herbaceous plant community in Denmark. A Bayesian modeling framework was used to ascertain whether the model amendments improve the performance of the models and increase their ability to predict community dynamics and to test hypotheses.

Important Findings

Inclusion of frequency-dependence and measurement error, but not unmeasured variables, improved model performance greatly. Our results emphasize the importance of comparing alternative models in quantitative studies of plant community dynamics. Only by considering possible alternative models can we identify the forces driving community assembly and change, and improve our ability to predict the behavior of plant communities.

Related Articles | Metrics
An invading annual plant benefits less from soil biota and has reduced competitive power with a resident grass
Xi Luo, Loralee Larios, Carla D’Antonio, Xiaohong Xu and Hui Guo
J Plant Ecol    2021, 14 (5): 945-958.   DOI: 10.1093/jpe/rtab050
Abstract103)      PDF       Save

Interactions between plants and their soil biota, arbuscular mycorrhizal fungi (AMF) in particular, may play a vital role in the establishment and the range expansion of exotic plants in new environments. However, whether there are post-introduction shifts in dependence on AMF and how dependency interacts with competition remains poorly understood.


We conducted a common garden greenhouse experiment to examine how native (USA) and invasive (China) populations of the plant species Plantago virginica, respond to soil biota, and whether these responses change in the presence of a competitor.

Important Findings

We found that while native populations consistently had a higher AMF colonization rate and benefited from AMF in both biomass and seed production, invasive populations received less benefit from AMF, and even showed reduced biomass with AMF in the presence of a competitor. This low mycorrhizal dependency in invasive populations correlated with greater suppression by an indigenous competitor for the invader. The different responses of the invasive and native populations to AMF suggest that alteration of mycorrhizal dependency has occurred during the invasion of P. virginica into China. Our findings suggest that this reduced dependency incurs a cost during interspecific competition.

Related Articles | Metrics
Effects of plant intraspecific variation on the prediction of C3/C4 vegetation ratio from carbon isotope composition of topsoil organic matter across grasslands
Wentao Luo, Xiaoguang Wang, Karl Auerswald, Zhengwen Wang, Michael I. Bird, Christopher J. Still, Xiao-Tao Lü and Xingguo Han
J Plant Ecol    2021, 14 (4): 628-637.   DOI: 10.1093/jpe/rtab022
Abstract70)      PDF       Save

Understanding the patterns and drivers of carbon isotope discrimination (13Δ) in C3 and C4 functional groups is critical for predicting C3/C4 vegetation ratio from the isotopic composition of soil organic matter. In this study, we aimed to evaluate how intraspecific variation will modify functional group-level 13Δ values and the associated prediction of C3/C4 vegetation ratio.


We investigated 13Δ of 726 individual plants (96 species; C3 and C4 functional groups) and topsoil organic matter in 26 grassland communities along an aridity gradient in northern China. The fraction of C4 contribution was calculated with mixing models that considered: (i) both intra- and interspecific effects on the 13Δ values of C3 and C4 functional groups; (ii) only interspecific effects; or (iii) none of these effects.

Important Findings

We found divergent responses of plant 13Δ at the intraspecific level to the changes of aridity across the gradient. The 13Δ of both C3 and C4 functional groups was negatively correlated with an aridity index, with higher sensitivity for C3 than for C4 functional groups. Intraspecific 13Δ variation played a key role in driving the total 13Δ variations of C3 plants. Overlooking such intraspecific effect in mixing models led to a greatly increased fraction of C4 contribution to soil organic carbon. A correction for the effects of intraspecific variation is therefore essential for correctly inferring C3/C4 vegetation ratio in the past. Our findings provide basic information for the reconstruction of past vegetation change from bulk materials in arid and semiarid biomes.

Related Articles | Metrics
Environmental constraints on the inter-genus variation in the scaling relationship between leaf nitrogen and phosphorus concentrations
Yanpei Guo, Zhengbing Yan, Yi-Wei Zhang, Guoyi Zhou, Zongqiang Xie, and Zhiyao Tang
J Plant Ecol    2021, 14 (4): 616-627.   DOI: 10.1093/jpe/rtab016
Abstract65)      PDF       Save

The scaling relationship between nitrogen (N) and phosphorus (P) concentrations ([N] and [P], respectively) in leaves manifests plants’ relative investment between the two nutrients. However, the variation in this relationship among taxa as well as its causes was seldom described.


The analysis was based on a dataset including 2483 leaf samples from 46 genera of angiosperm woody plants from 1733 sites across China. We calculated the leaf N–P scaling exponent (βL) with an allometric equation ([N] = α[P]β), for each genus, respectively. We then performed phylogenetic path analyses to test how the climate and soil niche conditions of these genera contributed to the inter-genus variation in βL.

Important Findings

The genera living with lower soil P availability presented a more favoured P uptake relative to N, as shown by the higher βL, suggesting a resistant trend to P limitation. Additionally, genus-wise βL was positively correlated with soil N–P scaling exponents (βS), implying that the variation in leaf nutrients is constrained by the variability in their sources from soil. Finally, climatic factors including temperature and moisture did not affect βL directly, but could have an indirect influence by mediating soil nutrients. Phylogeny did not affect the inter-genus variation in βL along environmental gradients. These results reveal that the trade-off between N and P uptake is remarkably shaped by genus niches, especially soil nutrient conditions, suggesting that the βL could be considered as a functional trait reflecting characteristics of nutrient utilization of plant taxa in response to niche differentiation.

Related Articles | Metrics
The effect of pollen source on seed traits and dispersability in the heterocarpic annual Crepis sancta
Efrat Dener, Hagai Shemesh and Itamar Giladi
J Plant Ecol    2021, 14 (3): 425-437.   DOI: 10.1093/jpe/rtaa105
Abstract76)      PDF       Save

The evolution and expression of dispersal-related traits are intertwined with those of other life-history functions and are manifested within various physiological constraints. Such a relationship is predicted between inbreeding levels and dispersability, which may be anatomically and ontogenetically linked so that the selection pressures on one may affect the other. While both the effect of inbreeding on reproductive success and on dispersal strategies received much attention, only a few studies considered both simultaneously. Furthermore, such studies often rely on two dichotomic representations of breeding and dispersal: using selfing versus outcrossing as a representation of breeding level, and dispersal ratio as the sole representation of dispersal strategy.


Here, we used pollination experiments in the heterocarpic Crepis sancta (Asteraceae) to expand in two different manners on the common practice of using dichotomic representations of breeding and dispersal. First, we used pollination treatments that represent a continuum from selfing through pollination by kin to pollination by a distant neighbor. Second, we measured a whole set of continuous morphological and dispersal-related traits, in addition to measurements of reproductive success and dispersal ratio.

Important Findings

The proportion of developed capitula and the number of both dispersed and non-dispersed achenes were significantly lower in the self-pollination treatment in comparison to the outcrossed treatments. The effect of pollen sources on dispersal ratio was not statistically significant, though self-pollinated plants rarely produced non-dispersing seeds. Achene’s biomass increased with distance between parent plants, but pappus width did not, leading to a nonsignificant effect of pollination on falling velocity. Overall, pollen source affected mainly traits that were associated with reproductive output, but it had no clear effect on predominately dispersal-related traits. Such differences in the response of reproduction and dispersal traits to variation in pollen source suggest that dispersal-related selection is probably weak and/or masked by other forces.

Related Articles | Metrics
Geographical variation in germination traits of the salt-marsh cordgrass Spartina alterniflora in its invasive and native ranges
Wen-Wen Liu, and Yi-Hui Zhang
J Plant Ecol    2021, 14 (2): 348-360.   DOI: 10.1093/jpe/rtaa094
Abstract78)      PDF       Save

Germination is the earliest life-history transition of a plant species. It determines the ecological breadth and geographic ranges of a species and has major effects on its invasion potential. The largest spread of the invasive salt-marsh cordgrass Spartina alterniflora in China, where it extends to latitudes lower than its native range in North America, provides an opportunity to examine germination trait variation across latitudes within and among its invasive and native ranges.


We studied seed germination traits of Salterniflora using seeds collected from 10 locations across latitudes in its invasive range (China, 20°–40° N) and 16 locations across latitudes in its native range (USA, 27°–43° N) in growth chambers with 0 PSU sterilized distilled water. We further evaluated how climate and tide range in the original locations influenced germination traits.

Important Findings

Native populations showed higher (~10%) germination percentage and significantly higher (~20%) germination index than invasive populations did, but invasive populations germinated significantly earlier (~3 days) than native populations. Germination percentage and germination index increased with latitude in the invasive range but decreased with latitude in the native range. The mean germination time decreased with latitude in the invasive range and paralleled that in the native range. Germination percentage and germination index were negatively correlated with mean daily temperature (Tmean), mean daily maximum temperature (Tmax) and mean daily minimum temperature (Tmin), and inversely correlated with Tmean, Tmax and Tmin in the native range. However, the mean germination time was positively correlated with Tmean, Tmax and Tmean in both ranges. Our results demonstrate that invasive and native populations have evolved different latitudinal clines in germination percentage and index, but the mean germination time of the invasive population mirrored the latitudinal cline observed in the native range, suggesting that germination strategy across latitudes may change during invasion process.

Related Articles | Metrics
Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe
Kai Yue, Dario A. Fornara, Wang Li, Xiangyin Ni, Yan Peng, Shu Liao, Siyi Tan, Dingyi Wang, Fuzhong Wu, and Yusheng Yang
J Plant Ecol    2021, 14 (3): 361-371.   DOI: 10.1093/jpe/rtaa100
Abstract191)      PDF       Save

Biomass allocation to different organs is a fundamental plant ecophysiological process to better respond to changing environments; yet, it remains poorly understood how patterns of biomass allocation respond to nitrogen (N) additions across terrestrial ecosystems worldwide.


We conducted a meta-analysis using 5474 pairwise observations from 333 articles to assess how N addition affected plant biomass and biomass allocation among different organs. We also tested the ‘ratio-based optimal partitioning’ vs. the ‘isometric allocation’ hypotheses to explain potential N addition effects on biomass allocation.

Important Findings

We found that (i) N addition significantly increased whole plant biomass and the biomass of different organs, but decreased root:shoot ratio (RS) and root mass fraction (RMF) while no effects of N addition on leaf mass fraction and stem mass fraction at the global scale; (ii) the effects of N addition on ratio-based biomass allocation were mediated by individual or interactive effects of moderator variables such as experimental conditions, plant functional types, latitudes and rates of N addition and (iii) N addition did not affect allometric relationships among different organs, suggesting that decreases in RS and RMF may result from isometric allocation patterns following increases in whole plant biomass. Despite alteration of ratio-based biomass allocation between root and shoot by N addition, the unaffected allometric scaling relationships among different organs (including root vs. shoot) suggest that plant biomass allocation patterns are more appropriately explained by the isometric allocation hypothesis rather than the optimal partitioning hypothesis. Our findings contribute to better understand N-induced effects on allometric relationships of terrestrial plants, and suggest that these ecophysiological responses should be incorporated into models that aim to predict how terrestrial ecosystems may respond to enhanced N deposition under future global change scenarios.

Related Articles | Metrics
Cited: WebOfScience(7)
Plant diversity promotes soil fungal pathogen richness under fertilization in an alpine meadow
Xiang Liu, Li Zhang, Mengjiao Huang and Shurong Zhou
J Plant Ecol    2021, 14 (2): 323-336.   DOI: 10.1093/jpe/rtaa099
Abstract83)      PDF       Save

The effects of fertilization on fungal plant pathogens in agricultural soils have been studied extensively. However, we know little about how fertilization affects the relative abundance and richness of soil fungal plant pathogens in natural ecosystems, either through altering the soil properties or plant community composition.


Here, we used data from a 7-year nitrogen (N) addition experiment in an alpine meadow on the Qinghai-Tibetan Plateau to test how N addition affects the relative abundance and richness of soil fungal plant pathogens, as determined using Miseq sequencing of ITS1 gene biomarkers. We also evaluated the relative importance of changes in soil properties versus plant species diversity under N addition.

Important Findings

Using general linear model selection and a piecewise structural equation model, we found that N addition increased the relative abundance of soil fungal plant pathogens by significantly altering soil properties. However, higher host plant species richness led to higher soil fungal plant pathogen richness, even after excluding the effects of N addition. We conclude that the relative abundance and richness of soil fungal plant pathogens are regulated by different mechanisms in the alpine meadow. Continuous worldwide N inputs (through both fertilizer use and nitrogen deposition) not only cause species losses via altered plant species interactions, but also produce changes in soil properties that result in more abundant soil fungal plant pathogens. This increase in pathogen relative abundance may seriously threaten ecosystem health, thus interrupting important ecosystem functions and services.

Related Articles | Metrics
Cited: WebOfScience(6)
The effects of evolutionary and environmental variance on estimates of phylogenetic diversity in temperate forest plots
Yong Xu, Jia-Jia Liu, Hai-Ning Li, Juan Liu, Kevin S. Burgess, and Xue-Jun Ge
J Plant Ecol    2021, 14 (1): 96-107.   DOI: 10.1093/jpe/rtaa078
Abstract116)      PDF       Save

Phylogenetic diversity metrics can discern the relative contributions of ecological and evolutionary processes associated with the assembly of plant communities. However, the magnitude of the potential variation associated with phylogenetic methodologies, and its effect on estimates of phylogenetic diversity, remains poorly understood. Here, we assess how sources of variation associated with estimates of phylogenetic diversity can potentially affect our understanding of plant community structure for a series of temperate forest plots in China.


In total, 20 forest plots, comprising of 274 woody species and 581 herbaceous species, were surveyed and sampled along an elevational gradient of 2800 m on Taibai Mountain, China. We used multi-model inference to search for the most parsimonious relationship between estimates of phylogenetic diversity and each of four predictors (i.e. type of phylogenetic reconstruction method, phylogenetic diversity metric, woody or herbaceous growth form and elevation), and their pairwise interactions.

Important Findings

There was no significant difference in patterns of phylogenetic diversity when using synthesis-based vs. molecular-based phylogenetic methods. Results showed that elevation, the type of phylogenetic diversity metric, growth form and their interactions, accounted for >44% of the variance in our estimates of phylogenetic diversity. In general, phylogenetic diversity decreased with increasing elevation; however, the trend was weaker for herbaceous plants than for woody plants. Moreover, the three phylogenetic diversity metrics showed consistent patterns (i.e. clustered) across the elevational gradient for woody plants. For herbaceous plants, the mean pairwise distance showed a random distribution over the gradient. These results suggest that a better understanding of temperate forest community structure can be obtained when estimates of phylogenetic diversity include methodological and environmental sources of variation.

Related Articles | Metrics
Soil microbes weaken the positive effect of an aquatic–terrestrial subsidy on plant performance
Alejandra B. Garcia, Hannah Locke and Kerri M. Crawford
J Plant Ecol    2021, 14 (1): 108-116.   DOI: 10.1093/jpe/rtaa079
Abstract29)      PDF       Save

Linkages formed through aquatic–terrestrial subsidies can play an important role in structuring communities and mediating ecosystem functions. Aquatic–terrestrial subsidies may be especially important in nutrient-poor ecosystems, such as the freshwater sand dunes surrounding Lake Michigan. Adult midges emerge from Lake Michigan in the spring, swarm to mate and die. Their carcasses form mounds at the base of plants, where they may increase plant productivity through their nutrient inputs. However, the effect of aquatic–terrestrial subsidies on plant productivity could depend on other biotic interactions. In particular, soil microbes might play a key role in facilitating the conversion of nutrients to plant-available forms or competing for the nutrients with plants.


In a greenhouse experiment, we tested how carcasses from lake emergent midges (Chironomidae) and soil microbes independently and interactively influenced the performance of a common dune grass, Calamovilfa longifolia. To determine whether midges influenced abiotic soil properties, we measured how midge additions influenced soil nutrients and soil moisture.

Important Findings

Midges greatly increased plant biomass, while soil microbes influenced the magnitude of this effect. In the absence of soil microbes plant biomass was seven times greater with midges than without midges. However, in the presence of soil microbes, plant biomass was only three times greater. The effect of midges might be driven by their nutrient inputs into the soil, as midges contained 100 times more N, 10 times more P and 150 times more K than dune soils did. Our results suggest that soil microbes may be competing with plants for these nutrients. In sum, we found that midges can be an important aquatic–terrestrial subsidy that produces strong, positive effects on plant productivity along the shorelines of Lake Michigan, but that the impact of aquatic–terrestrial subsidies must be considered within the context of the complex interactions that take place within ecological communities.

Related Articles | Metrics
The effects of an experimental drought on the ecophysiology and fruiting phenology of a tropical rainforest palm
Nara O. Vogado, Michael J. Liddell, Susan G. W. Laurance , Mason J. Campbell, Alexander W. Cheesman , Jayden E. Engert, Ana C. Palma , Françoise Y. Ishida and Lucas A. Cernusak
J Plant Ecol    2020, 13 (6): 744-753.   DOI: 10.1093/jpe/rtaa069
Abstract132)      PDF       Save

Anthropogenic climate change is predicted to increase mean temperatures and rainfall seasonality. How tropical rainforest species will respond to this climate change remains uncertain. Here we analyzed the effects of a 4-year experimental throughfall exclusion on an Australian endemic palm (Normambya normanbyi) in the Daintree rainforest of North Queensland, Australia. We aimed to understand the impact of a simulated reduction in rainfall on the species’ physiological processes and fruiting phenology.


We examined the fruiting phenology and ecophysiology of this locally abundant palm to determine the ecological responses of the species to drought. Soil water availability was reduced overall by ~30% under a throughfall exclusion experiment (TFE), established in May 2015. We monitored monthly fruiting activity for 8 years in total (2009 - 2018), including four years prior to the onset of the TFE. In the most recent year of the study, we measured physiological parameters including photosynthetic rate, stomatal conductance and carbon stable isotopes (δ 13C, an integrated measure of water use efficiency) from young and mature leaves in both the dry and wet seasons.

Important Findings

We determined that the monthly fruiting activity of all palms was primarily driven by photoperiod, mean solar radiation and mean temperature. However, individuals exposed to lower soil moisture in the TFE decreased significantly in fruiting activity, photosynthetic rate and stomatal conductance. We found that these measures of physiological performance were affected by the TFE, season and the interaction of the two. Recovery of fruiting activity in the TFE palms was observed in 2018, when there was an increase in shallow soil moisture compared to previous years in the treatment. Our findings suggest that palms, such as the N. normanbyi, will be sensitive to future climate change with long-term monitoring recommended to determine population-scale impacts.

Related Articles | Metrics
Contribution of plant traits to the explanation of temporal variations in carbon and water fluxes in semiarid grassland patches
Mengyu Wang, Nan Lu, Qinglin Li, Weiwei Fang and Bojie Fu
J Plant Ecol    2020, 13 (6): 773-784.   DOI: 10.1093/jpe/rtaa058
Abstract89)      PDF       Save

Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and regional carbon and water cycling.


A field study was conducted to characterize the seasonal variations in gas fluxes and explore their relationships with abiotic and biotic factors in a small grassland landscape. Daytime carbon and water fluxes including net ecosystem exchange, gross ecosystem productivity, ecosystem respiration and evapotranspiration (ET) were measured for three types of grassland patches over a growing season using the closed chamber method. The key plant trait variables were measured, and functional variance (FDvar) was calculated based on community-weighted mean (CWM).

Important Findings

The results showed that the temporal variations in the carbon and water fluxes were regulated by meteorological, soil and community functional variables. Inclusion of the CWM and FDvar of plant trait measures greatly improved the degree of explanation of the predict models. Specific leaf area and leaf δ13C content (Lδ13C) were the most important trait variables in affecting the variations of the gas fluxes. CWMs indices had greater importance than FDvar indices in predicting the variation of the C fluxes but FDvar indices were more important for ET than C fluxes. Our findings demonstrated that mass ratio hypothesis and the complementary effects hypothesis are not mutually exclusive but have different relative importance for different ecosystem processes. Community functional traits played important roles in predicting the spatiotemporal variations of carbon and water fluxes in semiarid grassland.

Related Articles | Metrics
Species-specific responses to drought, salinity and their interactions in Populus euphratica and P. pruinosa seedlings
Lei Yu, Haojie Dong, Zhijun Li, Zhanjiang Han, Helena Korpelainen and Chunyang Li
J Plant Ecol    2020, 13 (5): 563-573.   DOI: 10.1093/jpe/rtaa043
Abstract161)      PDF       Save

Drought and salinity are severe abiotic stress factors, which limit plant growth and productivity, particularly in desert regions. In this study, we employed two desert poplars, Populus euphratica Oliver and Populus pruinosa Schrenk seedlings, to compare their tolerance to drought, salinity and combined stress.


We investigated species-specific responses of P. euphratica and P. pruinosa in growth, photosynthetic capacity and pigment contents, nonstructural carbohydrate concentrations, Cl allocation, osmotic regulation and the accumulation of reactive oxygen species (ROS) under drought, salinity and the combined stress.

Important Findings

Populus pruinosa exhibited greater growth inhibitory effects, photosynthesis decline, stomatal closure and ROS accumulation, and lower antioxidant enzyme activities and osmotic regulation compared with P. euphratica under drought, salinity and especially under their combined stress. On the other hand, salt-stressed P. euphratica plants restricted salt transportation from roots to leaves, and allocated more Cl to coarse roots and less to leaves, whereas salt-stressed P. pruinosa allocated more Cl to leaves. It was shown that there is species-specific variation in these two desert poplars, and P. pruinosa suffers greater negative effects compared with P. euphratica under drought, salinity and especially under the combined stress. Therefore, in ecological restoration and afforestation efforts, species-specific responses and tolerances of these two poplar species to drought and salinity should be considered under climate change with increasing drought and soil salinity developing.

Related Articles | Metrics
Cited: WebOfScience(18)
In the beginning, there was only bare regolith—then some plants arrived and changed the regolith
Jun Zhou, Alejandra Zúñiga-Feest and Hans Lambers
J Plant Ecol    2020, 13 (5): 511-516.   DOI: 10.1093/jpe/rtaa030
Abstract84)      PDF       Save
Related Articles | Metrics
Cited: WebOfScience(9)
Are extrafloral nectaries efficient against herbivores? Herbivory and plant defenses in contrasting tropical species
Cássio Cardoso Pereira, Maria Gabriela Boaventura, Gislene Carvalho de Castro and Tatiana Cornelissen
J Plant Ecol    2020, 13 (4): 423-430.   DOI: 10.1093/jpe/rtaa029
Abstract77)      PDF       Save

Plants have limited resources for defenses and species that invest in biotic defenses might exhibit leaves that invest less in other types of defenses. We have investigated whether plants that have few mechanical defenses, but have extrafloral nectaries (EFNs) patrolled by ants, are less prone to herbivory, compared with plants without EFNs that have tougher leaves.


Data from the literature were extracted to examine the reported levels of herbivory in plants with or without EFNs. In a savanna vegetation in southern Brazil, field data were collected in leaves from six tropical species and herbivory and specific leaf area (SLA) levels were measured. We further evaluated differences in herbivory and SLA among species and between plants with or without EFNs. In order to test the relationship between herbivory and leaf toughness we regressed average herbivory and average SLA per plant.

Important Findings

Plants exhibited variable levels of leaf damage, but plants without ant defenses experienced the highest levels of leaf area loss to herbivory. Levels of mechanical defenses were also variable among the plant species. Plants without EFNs were tougher, exhibiting lower values of SLA. Although plants without EFNs had more sclerophyllous leaves, this mechanical defense was not sufficient to impair and/or reduce herbivore feeding, suggesting that the biotic defenses performed by patrolling ants might be more effective than investment in mechanical defenses associated with leaf palatability.

Related Articles | Metrics
Cited: WebOfScience(8)
A sweet new study: tropical forest species use nonstructural carbohydrates in different ways during drought
Jennifer S. Powers
J Plant Ecol    2020, 13 (4): 387-388.   DOI: 10.1093/jpe/rtaa020
Abstract134)      PDF       Save
Related Articles | Metrics
The ultraviolet colour component enhances the attractiveness of red flowers of a bee-pollinated plant
Zhe Chen, Chang-Qiu Liu, Hang Sun and Yang Niu
J Plant Ecol    2020, 13 (3): 354-360.   DOI: 10.1093/jpe/rtaa023
Abstract119)      PDF       Save

Bee-pollinated flowers are rarely red, presumably because bees (which lack red receptors) have difficulty detecting red targets. Although the response of bees to red colour has been investigated in lab experiments, most stimuli have been pure red, while the subtle diversity of red as perceived by humans (human-red) has received very limited attention. Here we test the hypothesis that ultraviolet (UV) reflected from human-red flowers enhances their attractiveness to bees, through increased chromatic contrast.


Using Onosma confertum (Boraginaceae), a plant with UV-reflecting red flowers that are pollinated by bumblebees, we investigated the effects of UV reflection on pollinator responses by conducting phenotypic manipulation experiments in the field. Colour preferences of flower-naïve bumblebees were also examined. Colour perception by bumblebees was estimated in terms of chromatic and achromatic contrast, based on two different colour perception models.

Important Findings

We found that both natural and flower-naïve bumblebees strongly preferred visiting UV-reflecting targets compared with UV-absorbing ones. Colour models show that the UV-reflecting flowers exhibit higher spectral purity and higher chromatic contrast against the foliage background, whereas they have similar achromatic contrast in terms of green receptor contrast. These results indicate that the component of UV reflection increases chromatic contrast in O. confertum, enhancing the visual attractiveness of these red flowers to bumblebees. We further infer that the secondary reflectance might be a necessary component in human-red flowers that are primarily pollinated by animals without red receptors, such as bees.

Related Articles | Metrics
Cited: WebOfScience(11)
The role of soluble sugars during drought in tropical tree seedlings with contrasting tolerances
Michael J. O’Brien, Annabelle Valtat, Samuel Abiven, Mirjam S. Studer, Robert Ong and Bernhard Schmid
J Plant Ecol    2020, 13 (4): 389-397.   DOI: 10.1093/jpe/rtaa017
Abstract218)      PDF       Save

Non-structural carbohydrates (NSCs) are plant storage compounds used for metabolism, transport, osmoregulation and regrowth following the loss of plant tissue. Even in conditions suitable for optimal growth, plants continue to store NSCs. This storage may be due to passive accumulation from sink-inhibited growth or active reserves that come at the expense of growth. The former pathway implies that NSCs may be a by-product of sink limitation, while the latter suggests a functional role of NSCs for use during poor conditions.


Using 13C pulse labelling, we traced the source of soluble sugars in stem and root organs during drought and everwet conditions for seedlings of two tropical tree species that differ in drought tolerance to estimate the relative allocation of NSCs stored prior to drought versus NSCs assimilated during drought. We monitored growth, stomatal conductance, stem water potential and NSC storage to assess a broad carbon response to drought.

Important Findings

We found that the drought-sensitive species had reduced growth, conserved NSC concentrations in leaf, stem and root organs and had a larger proportion of soluble sugars in stem and root organs that originated from pre-drought storage relative to seedlings in control conditions. In contrast, the drought-tolerant species maintained growth and stem and root NSC concentrations but had reduced leaf NSCs concentrations with a larger proportion of stem and root soluble sugars originated from freshly assimilated photosynthates relative to control seedlings. These results suggest the drought-sensitive species passively accumulated NSCs during water deficit due to growth inhibition, while the drought-tolerant species actively responded to water deficit by allocating NSCs to stem and root organs. These strategies seem correlated with baseline maximum growth rates, which supports previous research suggesting a trade-off between growth and drought tolerance while providing new evidence for the importance of plasticity in NSC allocation during drought.

Related Articles | Metrics
Cited: WebOfScience(13)
Soil nitrogen availability intensifies negative density-dependent effects in a subtropical forest
Fengmin Huang, Minxia Liang, Yi Zheng, Xubing Liu, Yuxin Chen, Wenbin Li, Shan Luo and Shixiao Yu
J Plant Ecol    2020, 13 (3): 281-287.   DOI: 10.1093/jpe/rtaa012
Abstract143)      PDF       Save

The importance of density-dependent mortality in maintaining tree species diversity is widely accepted. However, density-dependent effects may vary in magnitude and direction with different abiotic conditions in forests. Theoretical predictions surmise that density-dependent effects may vary with soil available nitrogen (AN), but this still needs to be tested.


We analyzed the density-dependent effects on survival of newly germinated seedlings for 18 common species based on a long-term seedling census across environmental gradients in a subtropical forest. We also conducted a root lesion detection experiment for five species to investigate the potential effects of pathogens on variation in density-dependent disease between rich and poor AN environments.

Important Findings

The seedling dynamics analysis revealed that the strength of density-dependent effects increased with AN, shifting from neutral or positive with low AN to negative with high AN. Three of the five tree species had stronger density-dependent effects on root lesions in rich AN environments than in poor AN environments, which is consistent with the results of a long-term seedling dynamics analysis. We also found higher species diversity in rich AN environments, which may be promoted by the stronger negative density-dependent effects. Both the seedling dynamic analysis and root lesion detection experiment revealed stronger negative density-dependent effects in higher AN environment, resulting from stronger disease pressure by soil pathogens. Our study emphasized the importance of considering context dependence when testing the density dependence hypotheses.

Related Articles | Metrics
Woody plant encroachment may decrease plant carbon storage in grasslands under future drier conditions
Yun-Hua Liu, Jun-Hui Cheng, Bernhard Schmid, Li-Song Tang and Jian-Dong Sheng
J Plant Ecol    2020, 13 (2): 213-223.   DOI: 10.1093/jpe/rtaa003
Abstract181)      PDF       Save

Woody plants are widely distributed in various grassland types along the altitudinal/climatic gradients in Xinjiang, China. Considering previously reported change in carbon (C) storage following woody plant encroachment in grasslands and the mediating effect of climate on this change, we predicted that a positive effect of woody plants on plant C storage in semiarid grasslands may revert to a negative effect in arid grasslands. We first investigated the spatial variation of aboveground C (AGC) and belowground C (BGC) storage among grassland types and then tested our prediction.


We measured the living AGC storage, litter C (LC) and BGC storage of plants in two physiognomic types, wooded grasslands (aboveground biomass of woody plants at least 50%) and pure grasslands without woody plants in six grassland types representing a gradient form semiarid to arid conditions across Xinjiang.

Important Findings Living AGC, LC, BGC and total plant C storage increased from desert to mountain meadows. These increases could also be explained by increasing mean annual precipitation (MAP) or decreasing mean annual temperature (MAT), suggesting that grassland types indeed represented an aridity gradient. Woody plants had an effect on the plant C storage both in size and in distribution relative to pure grasslands. The direction and strength of the effect of woody plants varied with grassland types due to the mediating effect of the climate, with wetter conditions promoting a positive effect of woody plants. Woody plants increased vegetation-level AGC through their high AGC relative to herbaceous plants. However, more negative effects of woody plants on herbaceous plants with increasing aridity led to a weaker increase in the living AGC in arid desert, steppe desert and desert steppe than in the less arid other grassland types. Under greater aridity (lower MAP and higher MAT), woody plants allocated less biomass to roots and had lower BGC and had a more negative impact on herbaceous plant production, thereby reducing vegetation-level BGC in the desert, steppe desert and desert steppe. In sum, this resulted in a negative effect of woody plants on total plant C storage in the most arid grasslands in Xinjiang. As a consequence, we predict that woody plant encroachment may decrease rather than increase C storage in grasslands under future drier conditions.

Related Articles | Metrics
Changes in niche differentiation and environmental filtering over a hydric stress gradient
Alejandra Martínez-Blancas, and Carlos Martorell
J Plant Ecol    2020, 13 (2): 185-194.   DOI: 10.1093/jpe/rtz061
Abstract155)      PDF       Save

Diversity in communities is determined by species’ ability to coexist with each other and to overcome environmental stress that may act as an environmental filter. Niche differentiation (ND) results in stronger intra- than interspecific competition and promotes coexistence. Because stress affects interactions, the strength of ND may change along stress gradients. A greater diversity of plant growth forms has been observed in stressful habitats, such as deserts and alpine regions, suggesting greater ND when stress is strong. We tested the hypothesis that niche differences and environmental filters become stronger with stress.


In a semiarid grassland in southern Mexico, we sowed six annual species in the field along a hydric stress gradient. Plants were grown alone (without interactions), with conspecific neighbors (intraspecific interactions) or with heterospecific neighbors (interspecific interactions). We analyzed how the ratio of intra- to interspecific competition changed along the gradient to assess how water availability determines the strength of ND. We also determined if hydric stress represented an environmental filter.

Important Findings

We observed stronger intra- than interspecific competition, especially where hydric stress was greater. Thus, we found ND in at least some portion of the gradient for all but one species. Some species were hindered by stress, but others were favored by it perhaps because it eliminates soil pathogens. Although strong ND was slightly more frequent with stress, our species sample was small and there were exceptions to the general pattern, so further research is needed to establish if this is a widespread phenomenon in nature.

Related Articles | Metrics
Cited: WebOfScience(5)
Changes in carbon storages of Fagus forest ecosystems along an elevational gradient on Mt. Fanjingshan in Southwest China
Qiong Cai, Chengjun Ji, Xuli Zhou, Helge Bruelheide, Wenjing Fang, Tianli Zheng, Jiangling Zhu, Lei Shi, Haibo Li, Jianxiao Zhu and Jingyun Fang
J Plant Ecol    2020, 13 (2): 139-149.   DOI: 10.1093/jpe/rtz055
Abstract176)      PDF       Save

There are different components of carbon (C) pools in a natural forest ecosystem: biomass, soil, litter and woody debris. We asked how these pools changed with elevation in one of China’s ecologically important forest ecosystem, i.e. beech (Fagus L., Fagaceae) forests, and what were the underlying driving factors of such variation.


The four C pools in nine beech forests were investigated along an elevational gradient (1095–1930 m) on Mt. Fanjingshan in Guizhou Province, Southwest China. Variance partitioning was used to explore the relative effects of stand age, climate and other factors on C storage. In addition, we compared the four C pools to other beech forests in Guizhou Province and worldwide.

Important Findings

The total C pools of beech forest ecosystems ranged from 190.5 to 504.3 Mg C ha–1, mainly attributed to biomass C (accounting for 33.7–73.9%) and soil C (accounting for 23.9–65.5%). No more than 4% of ecosystem C pools were stored in woody debris (0.05–3.1%) and litter (0.2–0.7%). Ecosystem C storage increased significantly with elevation, where both the biomass and woody debris C pools increased with elevation, while those of litter and soil exhibited no such trend. For the Guizhou beech forests, climate and stand age were found to be key drivers of the elevational patterns of ecosystem and biomass C storage, while for beech forests globally, stand age was the most important predictor. Compared to beech forests worldwide, beech forests in Guizhou Province displayed a relatively higher biomass C accumulation rate, which may be explained by a much higher precipitation in this area. The present study provides basic data for understanding the C budgets of Chinese beech forests and their possible roles in regional C cycling and emphasizes the general importance of stand age and climate on C accumulation.

Related Articles | Metrics
Spatiotemporal variation in leaf size and shape in response to climate
Yaoqi Li, Dongting Zou, Nawal Shrestha, Xiaoting Xu, Qinggang Wang, Wen Jia and Zhiheng Wang
J Plant Ecol    2020, 13 (1): 87-96.   DOI: 10.1093/jpe/rtz053
Abstract274)      PDF       Save

Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.


We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.

Important Findings

After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.

Related Articles | Metrics
Cited: WebOfScience(27)
Effects of environmental conditions and space on species turnover for three plant functional groups in Brazilian savannas
Hélio Menegat, Divino Vicente Silvério, Henrique A. Mews, Guarino R. Colli, Ana Clara Abadia, Leonardo Maracahipes-Santos, Lorrayne A. Gonçalves, Jhany Martins and Eddie Lenza
J Plant Ecol    2019, 12 (6): 1047-1058.   DOI: 10.1093/jpe/rty054
Abstract99)      PDF       Save

Different plant functional groups display diverging responses to the same environmental gradients. Here, we assess the effects of environmental and spatial predictors on species turnover of three functional groups of Brazilian savannas (Cerrado) plants—trees, palms and lianas—across the transition zone between the Cerrado and Amazon biomes in central Brazil.


We used edaphic, climatic and plant composition data from nine one-hectare plots to assess the effects of the environment and space on species turnover using a Redundancy Analysis and Generalized Dissimilarity Modeling (GDM), associated with variance partitioning.

Important Findings

We recorded 167 tree species, 5 palms and 4 liana species. Environmental variation was most important in explaining species turnover, relative to geographic distance, but the best predictors differed between functional groups: geographic distance and silt for lianas; silt for palms; geographic distance, temperature and elevation for trees. Geographic distances alone exerted little influence over species turnover for the three functional groups. The pure environmental variation explained most of the liana and palm turnover, while tree turnover was largely explained by the shared spatial and environmental contribution. The effects of geographic distance upon species turnover leveled off at about 300 km for trees, and 200 km for lianas, whereas they were unimportant for palm species turnover. Our results indicate that environmental factors that determine floristic composition and species turnover differ substantially between plant functional groups in savannas. Therefore, we recommend that studies that aim to investigate the role of environmental conditions in determining plant species turnover should examine plant functional groups separately.

Related Articles | Metrics
IF: 1.780
5-year IF: 2.674
Wen-Hao Zhang
Bernhard Schmid
CN 10-1172/Q
ISSN 1752-9921(print)
ISSN 1752-993X(online)