Current Issue
  • Volume 13 Issue 1

    On the cover: Ecosystem engineer (Arenaria tetraquetra) facilitates diverse plant species (e.g., Jasione amethystina, Leontodon boryi, Nevadensia purpurea, Festuca indigesta, Galium pyrenaicum) and, in turn, benefits from them by increasing its visibility to pollinators in the high-altitude Sierra Nevada, Spain.

      
    Editorial
    Wen-Hao Zhang, Bernhard Schmid, Lijuan Liu and Pu Wang
    2020, 13 (1): 1-2 .
    Abstract ( 138 )   PDF   Save
    Research Articles
    Sandra Saura-Mas, Anna Saperas and Franciso Lloret
    2020, 13 (1): 3-11 .
    Abstract ( 285 )   PDF   Save
    Aims

    Cistus albidus reproductive traits have been studied on typical Mediterranean shrublands along a water availability gradient in Northeastern Iberian Peninsula. Germination of this species is known to be highly favoured by fire. Moreover, Mediterranean species are particularly dependent on water availability. Therefore, we establish the hypothesis that in addition to fire disturbance, seedling recruitment in this Mediterranean seeder will be improved in drought-induced episodes resulting in generalized canopy die-off.

    Methods

    Individuals of several populations of C. albidus were collected and the size, weight and number of fruits and seeds were measured. Germination tests were also carried out on five pre-germination treatments: seeds’ exposure to heat shock, imbibition, two cycles of imbibition/desiccation and the combination of heat shock and imbibition and imbibition/desiccation cycles. Moreover, the number of seedlings after a drought event was surveyed in the field and correlated with canopy die-off.

    Important findings

    Our study shows the variability of the C. albidus reproductive traits, such as germination rate or fruit production, along the water availability gradient. This variability resulted in a decrease in fruit production but an increase in successful germination under drier conditions. Cistus albidus seeds increased germination with heat, demonstrating their ability to successfully establish after fire. However, recruitment was not exclusively fire dependent since seedling establishment was higher under C. albidus canopies that had collapsed after the extreme drought. Finally, adult density increased C. albidus die-off and mortality, as well as seedling establishment. These results suggest that this species exhibits a trade-off between different reproductive outcomes (i.e. seed production vs. viability), which in turn is determined by climate. This study also provides evidence of how intra-specific competition, climate, particularly drought events and fire disturbance, can determine the success of key early stages of the life history of a common, representative Mediterranean fire-prone seeder shrub.

    Verónica Loewe-Muñoz, Mónica Balzarini, Marta Ortega González
    2020, 13 (1): 12-19 .
    Abstract ( 309 )   PDF   Save
    Aims

    Persian walnut (Juglans regia L.), an interesting forest species for the veneering industry, requires adequate management to produce valuable high-quality logs. Since species associations and management level can improve stand productivity, the novelty of this work was to assess Persian walnut performance in different planting mixtures and in pure plantations conditioned to management intensity.

    Methods

    Growth, straightness and survival measurements were taken annually for 7 years after planting pure and mixed plantations under two contrasting management scenarios. Diseases were recorded at Age 7 in all plantations. Under each management intensity, besides the monoculture, three mixtures were tested: a mixture of only main forest species, main forest species plus one arboreal companion species, Black alder (Alnus glutinosa L.) and main species plus the shrub Russian olive (Elaeagnus angustifolia L.) as nurse species. A test of interaction between plantation type and management scenario was conducted using repeated growth data.

    Important Findings

    The interaction was significant, indicating the presence of different mechanisms underlying plantation effects under high and low management level. Compared with pure plantations, Persian walnut associated with the nurse shrub exhibited 78% higher height and 53% higher diameter growth in plantations under low management. Health benefits (lower presence of walnut blight than in the monoculture) and better straightness were also found in the association including the shrub when the management intensity was not high. These beneficial effects in the presence of Russian olive were not present under high management intensity (irrigation, fertilization, tutoring and frequent pruning). Site-specific designs for Persian walnut plantations would depend on the foreseen management intensity.

    Feng Sun, Yuyi Ou, Qiaojing Ou, Lingda Zeng, Hanxia Yu, Jin Zheng, Lei Gao, Weihua Li, Na Li and Changlian Peng
    2020, 13 (1): 20-26 .
    Abstract ( 205 )   PDF   Save
    Aims

    Natural hybridization between invasive and native species, as a form of adaptive evolution, threatens biodiversity worldwide. However, the potential invasive mechanisms of hybrids remain essentially unexplored, especially insights from soil chemical properties and soil microbial communities.

    Methods

    In a field experiment, soil microbial community, potassium-solubilizing bacteria, phosphorus-solubilizing bacteria, enzyme activities, and light-saturated photosynthetic rate were measured in invasive Sphagneticola trilobata and its hybrid with native Sphagneticola calendulacea in 2 years.

    Important Findings

    In general, soil dissolved organic carbon and the biomass of phosphorus-solubilizing bacteria were significantly higher under the hybrid treatment than S. trilobata and S. calendulacea. However, there were no significant differences in acid phosphatase, total PLFAs, bacterial PLFAs, fungi PLFAs, cellulase, and urase in these treatments. The hybrids had significantly higher light-saturated photosynthetic rate, photosynthetic nitrogen-, phosphorus-, potassium- use efficiencies than the invasive S. trilobata, but no significant difference with S. calendulacea. The total biomass and root biomass of hybrids were higher than S. calendulacea. Our results indicate that the hybrids species have a higher invasive potential than S. calendulacea, which may aggravate the local extinction of S. calendulaceain the future.

    Jonas Morales-Linares, José G. García-Franco, Alejandro Flores-Palacios, Thorsten Krömer and Tarin Toledo-Aceves
    2020, 13 (1): 27-35 .
    Abstract ( 266 )   PDF   Save
    Aims

    Habitat loss and fragmentation are the main threats to biodiversity in tropical forests. Agroecosystems such as shaded cocoa plantations (SCP) provide refuge for tropical forest biota. However, it is poorly known whether the interspecific ecological interactions are also maintained in these transformed habitats. We evaluated the diversity, reproductive status and photosynthetic metabolism (CAM or C3) of the epiphytic orchid community, and their interactions with host trees (phorophytes) in SCP compared to tropical rainforest (TRF).

    Methods

    In southeastern Mexico, three sites each in TRF and SCP were studied, with four 400 m2 plots established at each site to record all orchids and their phorophytes. We determined the reproductive (adult) or non-reproductive (juvenile) status of each orchid individual in relation to the presence or absence, respectively, of flowers/fruits (or remnants), and assigned the photosynthetic pathway of each orchid species based in literature. We used true diversity and ecological networks approaches to analyze orchid diversity and orchid–phorophyte interactions, respectively.

    Important Findings

    In total, 607 individuals belonging to 47 orchid species were recorded. Orchid diversity was higher in TRF (19 effective species) than in SCP (11 effective species) and only seven species were shared between the two habitats. CAM orchid species were more frequent in SCP (53%) than in TRF (14%). At the community level the proportion of non-reproductive and reproductive orchid species and the nested structure and specialization level of the TRF orchid–phorophyte network were maintained in SCP. However, only a subset of TRF epiphytic orchids remains in SCP, highlighting the importance of protecting TRF. Despite this difference, shaded agroecosystems such as SCP can maintain some of the diversity and functions of natural forests, since the SCP epiphytic orchid community, mainly composed of CAM species, and its phorophytes constitute a nested interaction network, which would confer robustness to disturbances.

    Lu-Xi Chen, Su-Ting Xu, Wei-Hang Ding, Jun-Min Li and Peter Alpert
    2020, 13 (1): 36-41 .
    Abstract ( 204 )   PDF   Save
    Aims

    Fruit color polymorphisms are widespread in plants, but what maintains them is largely unclear. One hypothesis is that some morphs are preferred by dispersers while others have higher pre- or postdispersal fitness. This leads to the prediction that fruit color morphs will differ in pre- or postdispersal fitness.

    Methods

    We compared genetic and clonal diversity, mating system, morphological traits that might be associated with resistance to freezing, and germination, survival and seed production of progeny of the red and white fruit morphs in a population of a diploid, wild strawberry, Fragaria pentaphylla, from south-central China.

    Important Findings

    The red morph was much more abundant than the white but did not show higher genetic diversity as measured by observed and effective numbers of alleles, Shannon information index, or expected or observed heterozygosities. AMOVA showed that most of the genetic variation in the population was within rather than between morphs. Morphs did not differ in mating system parameters, and no significant biparental inbreeding was found in either morph. Gene flow between two morphs was high (Nm = 6.89). Seeds of the red morph germinated about 2 days earlier and had a 40% higher rate of germination than those of the white morph, but survival of seedlings and seed production by surviving offspring did not differ between morphs. The whole postdispersal fitness of the red morph was about two times higher than that of the white morph. Red morphs had hairier petioles but not more surface wax on leaves. Overall, results showed partial evidence for difference in pre- and postdispersal fitness between fruit color morphs in F. pentaphylla. Differences in fitness independent of dispersal may thus partially account for fruit color polymorphism in all cases.

    Mathias Christina, Fawziah Limbada and Anne Atlan
    2020, 13 (1): 42-50 .
    Abstract ( 321 )   PDF   Save
    Aims

    Invasive species, which recently expanded, may help understand how climatic niche can shift at the time scale of the current global change. Here, we address the climatic niche shift of an invasive shrub (common gorse, Ulex europaeus) at the world and regional scales to assess how it could contribute to increasing invasibility.

    Methods

    Based on a 28 187 occurrences database, we used a combination of 9 species distribution models (SDM) to assess regional climatic niche from both the native range (Western Europe) and the introduced range in different parts of the world (North-West America, South America, North Europe, Australia and New Zealand).

    Important Findings

    Despite being restricted to annual mean temperature between 4°C and 22°C, as well as annual precipitation higher than 300 mm/year, the range of bioclimatic conditions suitable for gorse was very large. Based on a native versus introduced SDM comparison, we highlighted a niche expansion in North-West America, South America and to a lesser degree in Australia, while a niche displacement was assessed in North Europe. These niche changes induced an increase in potential occupied areas by gorse by 49, 111, 202 and 283% in Australia, North Europe, North-West America and South America, respectively. On the contrary, we found no evidence of niche change in New Zealand, which presents similar climatic condition to the native environment (Western Europe). This study highlights how niche expansion and displacement of gorse might increase invasibility at regional scale. The change in gorse niche toward new climatic conditions may result from adaptive plasticity or genetic evolution and may explain why it has such a high level of invasibility. Taking into account the possibility of a niche shift is crucial to improve invasive plants management and control.

    Yamei Chen, Yang Liu, Jian Zhang, Wanqin Yang, Changchun Deng and Runlian He
    2020, 13 (1): 51-58 .
    Abstract ( 200 )   PDF   Save
    Aims

    Plant litter decomposition is a key ecosystem process that determines carbon and nutrient cycling in terrestrial ecosystems. As a main component of litter, cellulose is a vital energy source for the microbes associated with litter decomposition. The important role of cellulolytic enzymes in litter cellulose degradation is well understood, but seasonal patterns of cellulose degradation and whether cumulative enzyme activities and litter quality forecast cellulose degradation in an alpine meadow remain elusive, which limits our understanding of cellulose degradation in herbaceous plant litter.

    Methods

    A two-year field litterbag experiment involving three dominant species (Ajuga ovalifoliaFestuca wallichanica, and Pedicularis roylei) was conducted in an alpine meadow of the eastern Tibetan Plateau to explore the seasonal patterns of cellulose degradation and how cumulative cellulolytic enzyme activities and initial litter quality impact cellulose degradation.

    Important findings

    Our study demonstrates that cellulose degraded rapidly and exceeded 50% during the first year, which mainly occurred in the first growing season (31.9%–43.3%). At two years of decomposition, cellulose degradation was driven by cumulative endoglucanase (R= 0.70), cumulative cellobiohydrolase (R= 0.59) and cumulative 1,4-β-glucosidase (R= 0.57). In addition, the concentrations of cellulose, dissolved organic carbon, total phenol, lignin and lignin/N accounted for 52%–78% of the variation in cellulose degradation during the two years of decomposition. The best model for predicting cellulose degradation was the initial cellulose concentration (R= 0.78). The enzymatic efficiencies and the allocation of cellulolytic enzyme activities were different among species. The cellulolytic enzyme efficiencies were higher in the litter of F. wallichanica with relatively lower quality. For the complete cellulose degradation of the leaf litter, A. ovalifolia and F. wallichanicarequired 4-fold and 6.7-fold more endoglucanase activity, 3-fold and 4.5-fold more cellobiohydrolase activity and 1.2-fold and 1.4-fold more 1,4-β-glucosidase activity, respectively, than those required by P. roylei. Our results demonstrated that although microbial activity and litter quality both have significant impacts on cellulose degradation in an alpine meadow, using cellulose concentration to predict cellulose degradation is a good way to simplify the model of cellulose degradation and C cycling during litter decomposition.

    Guo-Hong Wang, Hai-Wei Zhao, Meng An, He Li and Wei-Kang Zhang
    2020, 13 (1): 59-69 .
    Abstract ( 205 )   PDF   Save
    Aims

    We aimed to elucidate the driving forces underlying the geographical distribution of spruce forests, as well as the morphological and phylogenetic divergence among spruce species in China.

    Methods

    One hundred and seventy two sites across the entire range of spruce forests in China (23°–53° N, 75°–134° E, 250–4300 m a.s.l.) were sampled for species composition, geographical coordinates, and topographic and climatic variables. Sixteen spruce taxa, which are naturally distributed in China, were respectively grouped into morphologically defined sections and phylogenetically distinct clades. Multivariate approaches, including two-way indicator species analysis, principal components analysis, detrended correspondence analysis, canonical correspondence analysis (CCA), and partial CCA, were used for data analysis.

    Important Findings

    The 172 samples grouped into 13 spruce forests, the geographical distributions of which were closely related to climate and geographical location. The variation in species composition explained by the geographical coordinates (32.01%) was significantly higher than that explained by the climatic (27.76%) and topographic variables (23.32%). Of the three morphologically defined sections, sect. Omoricaoccurred mainly in wetter habitats with a mean annual precipitation of ca. 229 mm and 426 mm higher than the habitats of sect. Casicta and sect. Picea (P < 0.01), respectively. Of the two phylogenetically distinct clades, Clade-II (an older clade) occurred in habitats with warm winters and cool summers whose mean temperature in the coldest month was ca. 8–10°C higher, yet accumulated temperature during the growing season (≥ 5°C) was ca. 297–438°C lower, than the habitats of Clade-III (a younger clade) (P< 0.01). Our data support the hypothesis that geographical location may be a greater determinant of variation in species composition. In addition, moisture conditions tend to be the key determinants that account for the divergence among the morphologically defined sections, while the phylogenetic divergence among spruce species is mainly affected by temperature conditions. While the clades or sections of the spruce species in question carry strong climatic signals, their divergences are subject to different selective pressures.

    Jialiang Zhang, Evan Siemann, Baoliang Tian, Wei Huang and Jianqing Ding
    2020, 13 (1): 70-77 .
    Abstract ( 219 )   PDF   Save
    Aims

    Seeds of many invasive plants germinate more quickly than those of native species, likely facilitating invasion success. Assessing the germination traits and seed properties simultaneously for introduced and native populations of an invasive plant is essential to understanding biological invasions. Here, we used Triadica sebifera as a study organism to examine intraspecific differences in seed germination together with seed characteristics.

    Methods

    We measured physical (volume, mass, coat hardness and coat thickness of seeds) and chemical (crude fat, soluble protein, sugar, gibberellins [GA] and abscisic acid [ABA] of kernels) properties of T. sebifera seeds collected in 2017 from 12 introduced (United States) populations and 12 native (China) populations and tested their germination rates and timing in a greenhouse experiment in China. Furthermore, we conducted an extra experiment in the United States using seeds collected in 2016 and 2017 to compare the effects of study sites (China vs. United States) and seed collection time (2016 vs. 2017) on seed germination.

    Important Findings

    Seeds from the introduced range germinated faster than those from the native range. Physical and chemical measurements showed that seeds from the introduced range were larger, had higher GA concentrations and GA:ABA ratio, but lower crude fat concentrations compared to those from the native range. There were no significant differences in seed mass, coat hardness and coat thickness or kernel ABA, soluble protein or sugar concentrations between seeds from introduced vs. native ranges. Germination rates were correlated between United States and China greenhouses but germination rates for populations varied between collection years. Our results suggest that larger seeds and higher GA likely contribute to faster germination, potentially facilitating T. sebifera invasion in the introduced range.

    Dilia Mota-Gutiérrez, Guadalupe Arreola-González, Rafael Aguilar-Romero, Horacio Paz, Jeannine Cavender-Bares, Ken Oyama, Antonio Gonzalez-Rodriguez and Fernando Pineda-García
    2020, 13 (1): 78-86 .
    Abstract ( 272 )   PDF   Save
    Aims

    Mechanisms of plant drought resistance include both tolerance and avoidance. Xylem vulnerability to embolism and turgor loss point are considered traits that confer tolerance, while leaf abscission and deciduousness characterizes the avoidance strategy. While these mechanisms are thought to trade-off expressing a continuum among species, little is known on how variation in the timing and duration of leaf shedding in response to drought affect the relationship between xylem and leaf tolerance. In the present study, we explored the extent to which drought tolerance differs between two oak (Quercus) species that exhibit different leaf shedding behaviours. Particularly, we predicted that Q. deserticola Trel., which loses leaves at the end of the dry season (late-deciduous) and is thus exposed to a greater risk of cavitation, would be more drought tolerant and more conservative in its water use than Q. laeta Liebm., which loses its leaves for only a short period of time in the middle of the dry season (brevideciduous).

    Methods

    The study was conducted in central Mexico in a single population of each of the two oak species, separated from each other by a distance of 1.58 km, and by an altitudinal difference of 191 m. Quercus deserticola (late deciduous) is more frequent down slope, while Q. laeta (brevideciduous) tends to occur at higher elevations along the gradient. We assessed seasonal differences (rainy versus dry season) in native stem hydraulic conductivity, and tested for variation in xylem vulnerability to cavitation, leaf water use and leaf turgor loss point between the two species.

    Important Findings

    The two oak species did not differ in traits conferring drought tolerance, including xylem vulnerability to embolism, leaf turgor loss point, or stomatal conductance. However, both species had different performance during the dry season; the brevideciduous species had lower negative impact in the xylem function than the late-deciduous species. Overall, seasonal changes in plant physiological performance between the two oak species were determined by a reduction in the canopy leaf area.

    Yaoqi Li, Dongting Zou, Nawal Shrestha, Xiaoting Xu, Qinggang Wang, Wen Jia and Zhiheng Wang
    2020, 13 (1): 87-96 .
    Abstract ( 452 )   PDF   Save
    Aims

    Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.

    Methods

    We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.

    Important Findings

    After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.

    Le Tuan Ho, Raimund Schneider and Frank M. Thomas
    2020, 13 (1): 97-106 .
    Abstract ( 258 )   PDF   Save
    Aims

    In contrast to temperate regions, the reasons for growth reductions of individual tree species along elevational gradients in tropical mountain ranges are poorly known, especially for tropical conifers. We aimed at testing whether climatic or edaphic conditions are responsible for the reduced growth of Pinus kesiya, a widely distributed pine species of southern and south-eastern Asia, at higher elevations.

    Methods

    We analysed the stem diameter increment and the isotope discrimination against 13C (△ 13C) in tree rings of P. kesiya along an elevational gradient of ~900 to ~2000 m a.s.l. in the mountain ranges of South-Central Vietnam, and related growth to △  13C and to climatic and edaphic variables.

    Important findings

    We found no consistent correlation patterns between the basal area increment (BAI) of the trees and temperature or precipitation. In contrast, across the elevational gradient, we obtained significantly negative correlations of BAI with △  13C and with the C/N ratios and the δ 15N signature of the upper mineral soil. BAI was positively correlated with the concentrations of plant-available phosphorus (Pa) and of “base” cations (calcium, magnesium, potassium) in the soil. We conclude that lower temperatures at higher elevations exert an indirect effect on tree growth by inducing higher C/N ratios and by reducing the rate of nitrogen (N) and P mineralization, which may be further hampered by lower concentrations of “base” cations (upon enhanced leaching by precipitation) and a negative feedback from low availability of mineralized N and P at higher elevations. Our results may be transferable to the uppermost growth limit of P. kesiya and to other montane regions of the species’ occurrence.

    Gianalberto Losapio, and Christian Schöb
    2020, 13 (1): 107-113 .
    Abstract ( 193 )   PDF   Save
    Aims

    Ecosystem engineers substantially modify the environment via their impact on abiotic conditions and the biota, resulting in facilitation of associated species that would not otherwise grow. Yet, reciprocal effects are poorly understood as studies of plant–plant interactions usually estimate only benefits for associated species, while how another trophic level may mediate direct and indirect feedback effects for ecosystem engineers is hardly considered.

    Methods

    We ran a field experiment with two ecosystem engineers (Arenaria tetraquetra and Hormathophylla spinosa) blooming either alone or with associated plants to decompose net effects and to test the hypothesis that pollinator-mediated interactions provide benefits that balance costs of facilitation by ecosystem engineers.

    Important Findings

    We found that net costs of facilitation are accompanied by pollinator-mediated benefits. Despite ecosystem engineers producing fewer flowers per plant, they were visited by more and more diverse pollinators per flower when blooming with associated plants than when blooming alone. Although seed production per plant was higher when ecosystem engineers bloomed alone, fruit set and seed set varied between species. In one case (A. tetraquetra), fruit and seed sets were negatively affected by the presence of associated plants, whereas, in another case (H. spinosa), fruit set and seed set were higher and unaffected when ecosystem engineers bloomed with associated plants, respectively. Our findings suggest that besides experiencing direct costs, ecosystem engineers can also benefit from facilitating other species via increasing their own visibility to pollinators. Thus, we highlight that pollination interactions can compensate for costs of facilitation depending on ecosystem engineer species. This study illuminates how the outcome of direct plant–plant interactions might be mediated by indirect interactions including third players.

    Ke Zhang, Mengmeng Li, Yongzhong Su and Rong Yang
    2020, 13 (1): 114-121 .
    Abstract ( 289 )   PDF   Save
    Aims

    Understanding the regional pattern of leaf stoichiometry and its contributing variables are of importance for predicting plant responses to global change and modelling the productivity and nutrient fluxes of ecosystems. In this study, we investigated leaf stoichiometry of plants that sampled from Hexi Corridor, a typical arid region in China, and tried to explore the contribution variables on leaf stoichiometry along the geographic, climatic, and soil gradients.

    Methods

    In August 2012, 70 sites in Hexi Corridor were investigated. Plant leaves and soils from five equivalent plots within each site were sampled. C, N, and P contents of leaf and soil were measured.

    Important findings

    Compared with leaf N and P contents in regional and global scales, leaf N content in Hexi Corridor was close to them with the value of 20.19 mg g-1, while leaf P content was lower than them with the value of 1.34 mg g-1. Overall, leaf N:P value in Hexi Corridor was 15.70. Individually, leaf N:P values of shrubs and herbs were 16.81 and 14.80, respectively. Scaling exponents for leaf N vs. P of overall and shrubs in Hexi Corridor were 1.29, higher than the scaling exponent of herbs (1.08). Leaf stoichiometry of shrubs and herbs did not show significant latitudinal and longitudinal patterns, meanwhile, it has no significant correlation with mean annual precipitation (MAP), mean annual temperature (MAT), and soil elements. However, only leaf stoichiometry of herbs has significant correlation with altitude and aridity degree. These results indicate that plants in Hexi Corridor are possibly co-limited by N and P, while shrubs are mainly limited by soil P and herbs are limited by soil N. Scaling relationship reveals that leaf N vs. P of herbs is isometric. With increasing altitude, the quadratic regression for leaf C and N contents and the linear regression for leaf P content of herbs reflect the difference responses of the three elements on the variation of MAT along the altitude and it could be explained by plant physiology hypothesis and biogeochemical hypotheses. With decreasing aridity, leaf N and N:P of herbs increased significantly, inferring that herbs growth would be limited by P increasingly and strengthening the increasing nitrogen availability with increasing precipitation. In conclusion, different altitude and aridity patterns for leaf stoichiometry of herbs and shrubs reveal the plastic survive strategies of different xerophytes in Hexi Corridor. Moreover, leaf stoichiometry of herbs in Hexi Corridor could be as indicator of the changing environment that caused by aridity.

    Rubén Portela, Bi-Cheng Dong, Fei-Hai Yu, Rodolfo Barreiro, Sergio R. Roiloa, and Dalva M. Silva Matos
    2020, 13 (1): 122-129 .
    Abstract ( 332 )   PDF   Save
    Aims

    Recent studies have revealed heritable phenotypic plasticity through vegetative generations. In this sense, changes in gene regulation induced by the environment, such as DNA methylation (i.e. epigenetic changes), can result in reversible plastic responses being transferred to the offspring generations. This trans-generational plasticity is expected to be especially relevant in clonal plants, since reduction of sexual reproduction can decrease the potential for adaptation through genetic variation. Many of the most aggressive plant invaders are clonal, and clonality has been suggested as key to explain plant invasiveness. Here we aim to determine whether trans-generational effects occur in the clonal invader Alternanthera philoxeroides, and whether such effects differ between populations from native and non-native ranges.

    Methods

    In a common garden experiment, parent plants of A. philoxeroides from populations collected in Brazil (native range) and Iberian Peninsula (non-native range) were grown in high and low soil nutrient conditions, and offspring plants were transplanted to control conditions with high nutrients. To test the potential role of DNA methylation on trans-generational plasticity, half of the parent plants were treated with the demethylating agent, 5-azacytidine.

    Important Findings

    Trans-generational effects were observed both in populations from the native and the non-native ranges. Interestingly, trans-generational effects occurred on growth variables (number of ramets, stem mass, root mass and total mass) in the population from the native range, but on biomass partitioning in the population from the non-native range. Trans-generational effects of the population from the native range may be explained by a ‘silver-spoon’ effect, whereas those of the population from the non-native range could be explained by epigenetic transmission due to DNA methylation. Our study highlights the importance of trans-generational effects on the growth of a clonal plant, which could help to understand the mechanisms underlying expansion success of many clonal plants.

IF: 3.0
5-year IF: 2.5
Editors-in-Chief
Yuanhe Yang
Bernhard Schmid
CN 10-1172/Q
ISSN 1752-9921(print)
ISSN 1752-993X(online)