J Plant Ecol ›› 2020, Vol. 13 ›› Issue (1): 87-96.DOI: 10.1093/jpe/rtz053

• Research Articles • Previous Articles     Next Articles

Spatiotemporal variation in leaf size and shape in response to climate

Yaoqi Li1,†, Dongting Zou1,†, Nawal Shrestha1, Xiaoting Xu1,2, Qinggang Wang1,2,3, Wen Jia1 and Zhiheng Wang1, *   

  1. 1 Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China, 2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China, 3 Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2019-09-23 Revised:2019-11-08 Accepted:2019-12-11 Online:2019-12-02 Published:2020-02-01



Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.


We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.

Important Findings

After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.

Key words: climate change, geographical patterns, herbarium specimens, leaf traits, paleo-climate reconstruction



关键词: 气候变化, 地理格局, 植物标本馆标本, 叶片性状, 古气候重建