J Plant Ecol ›› 2014, Vol. 7 ›› Issue (5): 429-438 .DOI: 10.1093/jpe/rtt060

• Research Articles • Previous Articles     Next Articles

Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior) afforestation chronosequence in Ireland

Michael L. Wellock1, Rashad Rafique2,*, Christina M. LaPerle1, Matthias Peichl3 and Gerard Kiely1   

  1. 1 Centre for Hydrology, Micrometeorology and Climate Change, Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland; 2 Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; 3 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
  • Received:2013-06-04 Accepted:2013-10-29 Published:2014-09-24
  • Contact: Rafique, Rashid

Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior) afforestation chronosequence in Ireland

Abstract: Aims Government policy in Ireland is to increase the national forest cover from the current 10% to 18% of the total land area by 2020. This represents a major land use change that is expected to impact on the national carbon (C) stocks. While the C stocks of ecosystem biomass and soils of Irish grasslands and coniferous forests have been quantified, little work has been done to assess the impact of broadleaf afforestation on C stocks.
Methods In this study, we sampled a chronosequence of ash (Fraxinus excelsior) forests aged 12, 20, 27, 40 and 47 years on brown earth soils. A grassland site, representative of the pre-afforestation land use, was sampled as a control.
Important findings Our results show that there was a significant decline (P < 0.05) in the carbon density of the soil (0–30cm) following afforestation from the grassland (90.2 Mg C ha-1) to the 27-year-old forest (66.7 Mg C ha-1). Subsequently, the forest soils switched from being a C source to a C sink and began to sequester C to 71.3 Mg C ha-1 at the 47-year-old forest. We found the amount of C stored in the above- and belowground biomass increased with age of the forest stands and offset the amount of C lost from the soil. The amount of C stored in the above- and belowground biomass increased on average by 1.83 Mg C ha-1 year-1. The increased storage of C in the biomass led to an increase in the total ecosystem C, from 90.2 Mg C ha-1 at the grassland site to 162.6 Mg C ha-1 at the 47-year-old forest. On a national scale, projected rates of ash afforestation to the year 2020 may cause a loss of 290 752 Mg C from the soil compared to 2 525 936 Mg C sequestered into the tree biomass. The effects of harvesting and reforestation may further modify the development of ecosystem C stocks over an entire ash rotation.

Key words: ash (Fraxinus excelsior L.), chronosequence, soil, biomass, carbon, ecosystem

摘要:
Aims Government policy in Ireland is to increase the national forest cover from the current 10% to 18% of the total land area by 2020. This represents a major land use change that is expected to impact on the national carbon (C) stocks. While the C stocks of ecosystem biomass and soils of Irish grasslands and coniferous forests have been quantified, little work has been done to assess the impact of broadleaf afforestation on C stocks.
Methods In this study, we sampled a chronosequence of ash (Fraxinus excelsior) forests aged 12, 20, 27, 40 and 47 years on brown earth soils. A grassland site, representative of the pre-afforestation land use, was sampled as a control.
Important findings Our results show that there was a significant decline (P < 0.05) in the carbon density of the soil (0–30cm) following afforestation from the grassland (90.2 Mg C ha-1) to the 27-year-old forest (66.7 Mg C ha-1). Subsequently, the forest soils switched from being a C source to a C sink and began to sequester C to 71.3 Mg C ha-1 at the 47-year-old forest. We found the amount of C stored in the above- and belowground biomass increased with age of the forest stands and offset the amount of C lost from the soil. The amount of C stored in the above- and belowground biomass increased on average by 1.83 Mg C ha-1 year-1. The increased storage of C in the biomass led to an increase in the total ecosystem C, from 90.2 Mg C ha-1 at the grassland site to 162.6 Mg C ha-1 at the 47-year-old forest. On a national scale, projected rates of ash afforestation to the year 2020 may cause a loss of 290 752 Mg C from the soil compared to 2 525 936 Mg C sequestered into the tree biomass. The effects of harvesting and reforestation may further modify the development of ecosystem C stocks over an entire ash rotation.