Journal of Plant Ecology

• •    

解析泥炭藓的氮适应机制:高氮沉降下的微生物共生与代谢重编程

  

  • 收稿日期:2025-10-21 接受日期:2025-11-16

Decoding nitrogen resilience in Sphagnum palustre: Microbial symbiosis and metabolic reprogramming under elevated nitrogen deposition

Xiaohan Yanga,b,c,d, Lin Wue, Xianlin Guoa,b,c, Huai Chena,b,c, Dan Xuea,b,c*   

  1. aMountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China

    bChina-Croatia Belt and Road Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China

    cZoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China

    dUniversity of Chinese Academy of Sciences, Beijing 100049, China

    eSchool of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China


    *Corresponding author: Chengdu Institute of Biology, Chinese Academy of Sciences, No. 23 Qunxian South Street, Tianfu New District, 610213 Chengdu, China. 

    E-mail addresses: xuedan@cib.ac.cn (D. Xue)

  • Received:2025-10-21 Accepted:2025-11-16
  • Supported by:
    This work was supported by the International Partnership Program of Chinese Academy of Sciences for Grand Challenges (069GJHZ2023013GC), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022376) and the Natural Science Foundation of Sichuan Province (2025NSFJQ0028).

摘要: 泥炭藓作为泥炭的主要成碳植物,在维持泥炭地的碳氮平衡中发挥关键作用。然而,持续上升的大气氮沉降正威胁其生态稳定性。本研究通过多组学分析揭示了不同氮梯度下(0、3、6 和 12 g N m−2 a−1)泥炭藓对氮富集环境(尤其中等氮输入条件下)的适应机制。结果表明,中等氮添加(6 g N m−2 a−1)条件下泥炭藓生长稳定性最高,而与维管植物生物量持续增加的现象形成鲜明对比。机制层面,氮富集显著抑制了共生微生物的固氮作用,表明宿主通过调控共生微生物实现对外源氮输入的下调;同时,泥炭藓表现出显著的代谢重编程:氮同化关键酶(硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶和谷氨酸合成酶)的活性与基因表达均下降,而氨基酸合成及富氮代谢物的累积显著增强。这种“减少外源氮获取-重构内源氮代谢”的双重调控策略,是其在氮富集环境下维持氮稳态并缓解毒害的关键适应机制。研究结果揭示了泥炭藓通过微生物调控与代谢可塑性协同实现耐氮性的机制,为预测未来氮沉降情景下泥炭藓主导泥炭地的生态稳定性提供了新的见解。

关键词: 泥炭藓, 氮沉降, 适应性, 多组学分析, 微生物共生, 氮代谢

Abstract: Sphagnum palustre, a dominant peat-forming moss, plays a pivotal role in maintaining peatland carbon and nitrogen balance. However, increasing atmospheric nitrogen (N) deposition threatens its ecological stability. To elucidate the adaptive responses of S. palustre to nitrogen-enriched conditions, especially under moderate N input, we applied physiological, microbial, metabolomic, and transcriptomic analyses to peatland across a nitrogen gradient (0, 3, 6, and 12 g N m−2 a−1). Sphagnum palustre displayed the greatest growth stability under moderate nitrogen addition (6 g N m−2 a−1), contrasting with the observed continuous increase in vascular plant biomass. Mechanistically, nitrogen enrichment markedly suppressed microbial nitrogen fixation, consistent with host-mediated downregulation of external N inputs. Simultaneously, S. palustre exhibited substantial metabolic reprogramming; the activity and expression levels of nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase) declined, while amino acid synthesis and nitrogen-rich metabolite accumulation were both enhanced. This dual regulatory strategy—reducing external N acquisition and reallocating internal N metabolism—represents a key adaptive mechanism that both maintains nitrogen homeostasis and mitigates toxicity under enrichment. Our findings highlight the mechanisms by which S. palustre achieves nitrogen resilience through coordinated microbial and metabolic regulation, providing new insight into the ecological stability of moss-dominated peatlands under the expected future nitrogen deposition conditions.

Key words: Sphagnum, nitrogen deposition, adaptation, multi-omics analysis, microbial symbiosis, nitrogen metabolism