J Plant Ecol ›› 2019, Vol. 12 ›› Issue (4): 645-652 .DOI: 10.1093/jpe/rtz001

• Research Articles • Previous Articles     Next Articles

Longer conserved alpine forests ecosystem exhibits higher stability to climate change on the Tibetan Plateau

Jian Li1, Nan Cong2,*, Jiaxing Zu2,3, Yuqin Xin4, Ke Huang2, Quan Zhou1, Yaojie Liu2,5,6, Lin Zhou1, Li Wang2,7, Yang Liu8 and Ge Zhang9,10   

  1. 1 Southwest Branch of State Grid Corporation of China, Chengdu 610094, China
    2 Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100090, China
    4 Xizang Xinhe Supervision and Consulting Limited Company, Lhasa 850000, China
    5 International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
    6 School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    7 Peking University Shenzhen Graduate School, Shenzhen 518055, China
    8 State Grid Sichuan Electric Power Company, Chengdu 610094, China
    9 School of Urban and Environment, Liaoning Normal University, Dalian 116029, China
    10 Heilongjiang University of Science and Technology, Harbin 150001, China
    *Correspondence address. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Tel/Fax: +86-10-64889703; E-mail: congnan@igsnrr.ac.cn
  • Received:2018-11-30 Revised:2018-12-25 Accepted:2019-01-05 Online:2019-01-08 Published:2019-08-01

Abstract:

Aims

Vegetation dynamics are simultaneously regulated by climate change and anthropogenic activities. Since the 1980s, climate has been warming on the Tibetan Plateau (TP) at a rate higher than North Hemisphere average. Anthropogenic activities, including grazing, farming, and urbanization, are also influencing the alpine ecosystem on the TP. Especially, an ensemble of large engineering projects, such as power transported from west to east by State Grid, has been in operation on the TP. While studies disentangling effects of climate and anthropogenic activities interference are still lacking for the forest ecosystems on the TP. The overarching objectives of this study were to separate effects of natural climates and human interferences on forest ecosystem dynamics on the TP.

Methods

We compared vegetation activities of two typical natural reserves (Gongbu natural reserve, GNR, and Yarlung zangbo river grand canyon natural reserve, YNR) and their surroundings in southeastern Tibet (outside of the natural reserves, ONR) using long-term satellite normalized difference vegetation index (NDVI) dataset. Linear regression and partial correlation analyses were constructed for the relationship between vegetation activity and climates to evaluate the distinct climate effects on the two natural reserves.

Important Findings

The two natural reserves were established at different time, which were related to anthropogenic activities impact durations. The results showed that the annual mean NDVI fluctuated between 0.5 and 0.6 in the relatively longer reserved YNR, which was remarkably higher than those in other regions (with NDVI lower than 0.45). The vegetation vigor in the YNR showed neither a significant temporal trend nor significant relationship with climate. Nevertheless, vegetation vigor exhibited a significant increasing trend during the last three decades (0.012/decade) at the GNR. The inter-decadal analysis turned out positive relationships between vegetation vigor and annual temperature since late 1990s until early 2000s when the GNR was officially established. This study underlined the importance of considering human interference duration when assessing the relationships between vegetation dynamics and climates.

Key words: climate change, human interference, natural reserves, vegetation activity, Southeastern Tibet