J Plant Ecol ›› 2011, Vol. 4 ›› Issue (3): 147-156 .DOI: 10.1093/jpe/rtq026

• Research Articles • Previous Articles     Next Articles

The relationship between relative growth rate and whole-plant C:N:P stoichiometry in plant seedlings grown under nutrient-enriched conditions

Youhong Peng1, Karl J. Niklas2 and Shucun Sun1,3,*   

  1. 1 ECORES Lab, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4 Renminnan Road, Chengdu 610041, China; 2 Department of Plant Biology, Cornell University, Ithaca, NY 14850, USA; 3 Department of Biology, Nanjing University, Nanjing 210093, China
  • Received:2010-03-04 Accepted:2010-09-20 Published:2011-08-24
  • Contact: Sun, Shucun

The relationship between relative growth rate and whole-plant C:N:P stoichiometry in plant seedlings grown under nutrient-enriched conditions

Abstract: Aims Recent theories indicate that N is more in demand for plant growth than P; therefore, N concentration and N : C and N : P ratios are predicted to be positively correlated with relative growth rate (RGR) in plants under nutrient-enriched conditions. This prediction was tested in this study.
Methods We examined the whole-plant concentrations of C, N and P and RGR, as well as the relationship between RGR and the concentrations and the ratios of N : C, P : C and N : P, for different harvest stages (the days after seed germination) of the seedlings of seven shrub species and four herbaceous species grown in N and P non-limiting conditions. The relationships among plant size, nutrient concentrations and ratios were subsequently determined.
Important findings RGR was positively correlated with N concentration and the ratios of N : P and N : C when the data were pooled for all species and for each shrub species, but not for individual herbaceous species. However, the relationship between RGR and P concentration and P : C was not significantly correlated for either shrubs or herbs. The variation of N among harvest stages and species was much greater than that of P, and the variation in N : P ratio was determined primarily by changes in N concentration. The shrub species differed from the herbaceous species in their N and P concentrations, nutrient ratios and in intraspecific relationships between RGR and nutrient ratios. These differences possibly reflect differences in the capacity for P storage and biomass allocation patterns. In general, our data support recent theoretical predictions regarding the relationship between RGR and C : N : P stoichiometry, but they also show that species with different life forms differ in the relationships among RGR and C : N : P stoichimetries.

Key words: C:N:P stoichiometry, RGR, growth rate hypothesis, life forms, seedlings, screening experiment

摘要:
Aims Recent theories indicate that N is more in demand for plant growth than P; therefore, N concentration and N : C and N : P ratios are predicted to be positively correlated with relative growth rate (RGR) in plants under nutrient-enriched conditions. This prediction was tested in this study.
Methods We examined the whole-plant concentrations of C, N and P and RGR, as well as the relationship between RGR and the concentrations and the ratios of N : C, P : C and N : P, for different harvest stages (the days after seed germination) of the seedlings of seven shrub species and four herbaceous species grown in N and P non-limiting conditions. The relationships among plant size, nutrient concentrations and ratios were subsequently determined.
Important findings RGR was positively correlated with N concentration and the ratios of N : P and N : C when the data were pooled for all species and for each shrub species, but not for individual herbaceous species. However, the relationship between RGR and P concentration and P : C was not significantly correlated for either shrubs or herbs. The variation of N among harvest stages and species was much greater than that of P, and the variation in N : P ratio was determined primarily by changes in N concentration. The shrub species differed from the herbaceous species in their N and P concentrations, nutrient ratios and in intraspecific relationships between RGR and nutrient ratios. These differences possibly reflect differences in the capacity for P storage and biomass allocation patterns. In general, our data support recent theoretical predictions regarding the relationship between RGR and C : N : P stoichiometry, but they also show that species with different life forms differ in the relationships among RGR and C : N : P stoichimetries.