J Plant Ecol ›› 2010, Vol. 3 ›› Issue (2): 123-130 .DOI: 10.1093/jpe/rtq006

• Research Articles • Previous Articles     Next Articles

N:P stoichiometry in Ficus racemosa and its mutualistic pollinator

Guangming Zhang1,2 and Xingguo Han1,*   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2009-12-08 Accepted:2009-12-30 Published:2010-05-26
  • Contact: Zhang, Guangming

N:P stoichiometry in Ficus racemosa and its mutualistic pollinator

Abstract: Aims Nitrogen (N) and phosphorus (P) are limiting nutrients to life across a variety of ecosystems. N:P stoichiometry, concerning the balance of these two elements, has recently received great attention. However, little is known about the nature of N:P stoichiometry in obligate mutualism.
Methods N:P stoichiometry of Ficus racemosa and its pollinating wasp Ceratosolen fusciceps, an example of coevolving obligate mutualism, was investigated, and the N:P stoichiometric traits of male versus female wasps were compared.
Important findings Nutrient concentrations in C. fusciceps were much higher than in its host. N enrichment in fig wasp was evidently stronger than phosphorus. N concentrations of male fig wasps were significantly higher than those of females, while P concentrations of female fig wasps were remarkably higher than those of male ones. Therefore, N:P ratios in male fig wasps were significantly greater than in female fig wasps. N:P ratio in fig-pollinating wasp displayed linear functions to fig N contents, suggesting that N limitation in fig wasps may dominate the nutritional relationship between fig pollinator and its host. Fig wasp population size had significant influences on N concentrations in host fig and female wasp per se. Driven by the nutritional stress of pollinating and parasite insects, fig fruit preferred increasing its diameter first but not nutrient richness. Values for N and P contents of fig pollinators showed seasonal differences with greater N:P ratios in dry season than in rainy season. The observations suggest that tropical climate change would result in more severe N limitation to fig-pollinating wasp and may further influence the stability of fig–fig wasp mutualism.

Key words: N:P stoichiometry, Ficus racemosa, fig wasp, sex divergence, mutualism, coevolution, tropical rainforest, human disturbance, Xishuangbanna

摘要:
Aims Nitrogen (N) and phosphorus (P) are limiting nutrients to life across a variety of ecosystems. N:P stoichiometry, concerning the balance of these two elements, has recently received great attention. However, little is known about the nature of N:P stoichiometry in obligate mutualism.
Methods N:P stoichiometry of Ficus racemosa and its pollinating wasp Ceratosolen fusciceps, an example of coevolving obligate mutualism, was investigated, and the N:P stoichiometric traits of male versus female wasps were compared.
Important findings Nutrient concentrations in C. fusciceps were much higher than in its host. N enrichment in fig wasp was evidently stronger than phosphorus. N concentrations of male fig wasps were significantly higher than those of females, while P concentrations of female fig wasps were remarkably higher than those of male ones. Therefore, N:P ratios in male fig wasps were significantly greater than in female fig wasps. N:P ratio in fig-pollinating wasp displayed linear functions to fig N contents, suggesting that N limitation in fig wasps may dominate the nutritional relationship between fig pollinator and its host. Fig wasp population size had significant influences on N concentrations in host fig and female wasp per se. Driven by the nutritional stress of pollinating and parasite insects, fig fruit preferred increasing its diameter first but not nutrient richness. Values for N and P contents of fig pollinators showed seasonal differences with greater N:P ratios in dry season than in rainy season. The observations suggest that tropical climate change would result in more severe N limitation to fig-pollinating wasp and may further influence the stability of fig–fig wasp mutualism.