Journal of Plant Ecology

• • 上一篇    下一篇

干旱胁迫下的碳氮互作:植物双重限制机制与缓解策略

  

  • 收稿日期:2025-12-02 接受日期:2026-02-13

Carbon-Nitrogen Interplay Under Drought Stress: Mechanisms of Dual Limitation and Mitigation Strategies in Plants

Yu Gao1,2, Baihui Wang3, Mengnan Li1, Yun Qiu1, Siyi She4, Ling Zhang5, Xiaoming Zou2, Honghua Ruan1*   

  1. 1Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

    2Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment; Nanjing, 210014, China 

    3State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

    4School of Arts, Shandong University, Jinan, 250100, China

    5Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China 

     *Correspondence: Honghua Ruan, E-mail: hhruan@njfu.edu.cn

  • Received:2025-12-02 Accepted:2026-02-13
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (No. 2023YFD2200404 and No. 2021YFD2200403)

摘要: 干旱胁迫通过破坏碳(C)同化与氮(N)循环之间的相互作用,显著限制植物生长和陆地生态系统生产力。本综述系统梳理了干旱条件下多层级的“碳氮双限制”反馈循环的研究证据,该循环主要源于以下关键机制的受损:(1)气孔与非气孔限制共同导致的光合碳同化能量下降;(2)土壤氮矿化与根系氮吸收受抑制;(3)干旱驱动的微生物群落结构变化削弱了有机氮动员与菌根养分运输能力;(4)能量分配发生冲突,即作为能量的腺苷三磷酸(ATP)和作为还原力的还原型辅酶Ⅱ(NADPH)从生长转向抗氧化防御。为阐明这一碳氮失衡的复杂性成因,我们聚焦于三个关键问题展开讨论:(1)剖析增强该反馈循环的生理、代谢与分子过程的交互调控;(2)比较C3、C4与景天酸代谢(CAM)植物之间的碳氮协调策略的差异,并将其与不同光合类型的干旱抗性机制相联系;(3)系统评估缓解碳氮双重限制的可能途径,包括靶向调控雷帕霉素靶蛋白(TOR)/蔗糖非发酵相关激酶1(SnRK1)和脱落酸–活性氧(ABA–ROS)等网络关键节点,到利用根际微生物生态功能,并讨论如何将这些途径整合到预测模型之中。通过对现有研究进行系统梳理与综合,本综述旨在为完整理解植物在干旱环境下的碳氮耦合调控机制提供一个统一的理论框架,并为气候变化背景下的可持续生态系统管理策略提供科学依据。

关键词: 干旱, 光合作用, 氮转化, 碳固定, 碳氮双限制

Abstract: Drought stress significantly constrains plant growth and terrestrial ecosystem productivity by disrupting the synergistic interplay between carbon (C) assimilation and nitrogen (N) cycling. This review synthesizes evidence for a multi-tiered “C–N dual limitation” feedback loop under drought conditions, driven by the following key mechanistic disruptions: (1) impaired photosynthetic C assimilation due to combined stomatal and non-stomatal limitations; (2) suppressed soil N mineralization and reduced root N uptake; (3) drought-driven shifts in microbial community structure that weaken organic N mobilization and mycorrhizal nutrient transport; and (4) a metabolic trade-off in energy allocation, whereby ATP and NADPH are diverted from growth to antioxidant defense. To unravel the complexity of this C–N imbalance, we address three pivotal issues: (1) to dissect the interactive regulation of physiological, metabolic, and molecular processes that reinforce the feedback loop; (2) to contrast the C–N coordination strategies across C3, C4, and CAM plants, linking these differences to divergent drought resilience; (3) to evaluate pathways to mitigate this limitation, ranging from the targeting of key regulatory hubs such as TOR/SnRK1 and ABA-ROS signaling, to leveraging of rhizosphere microbial ecology, and to discuss their integration into predictive models. By integrating current insights, this review presents a coherent framework for understanding plant drought resistance and proposes actionable strategies for sustainable ecosystem management in a changing climate.

Key words: drought, photosynthesis, nitrogen transformation, carbon fixation, carbon–nitrogen dual limitation