Journal of Plant Ecology ›› 2024, Vol. 17 ›› Issue (6): 1-12.DOI: 10.1093/jpe/rtae097

• • 上一篇    

氮沉降对花椒及间作系统的影响:多种栽培模式下生长、叶绿素荧光与产量的综合评估

  

  • 收稿日期:2024-12-29 接受日期:2024-10-12 出版日期:2024-12-01 发布日期:2025-01-10

Impacts of nitrogen deposition on Zanthoxylum bungeanum and intercropped plants: assessing growth, chlorophyll fluorescence and yields across diverse cultivation systems

Zilong Li1,2,3, Kaiwen Pan2,*, Xiyang Li4,*, Sizhong Wang2,3, Xue Tan2,3 and Dan Huang2,3   

  1. 1 School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
    2 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    3 University of Chinese Academy of Sciences, Beijing 100039, China
    4 School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

    *Corresponding author. E-mail: pankw@cib.ac.cn (K.P.); lixiyangsummer@foxmail.com (X.L.)
  • Received:2024-12-29 Accepted:2024-10-12 Online:2024-12-01 Published:2025-01-10
  • Supported by:
    This study was sponsored by the National Natural Science Foundation of China (31370632 and 31500517) and Ministry of Sciences and Technology of China (2015BAD07B050304).

摘要: 本研究探讨了氮沉降对花椒(Zanthoxylum bungeanum Maxim.) 在单作及与辣椒(Capsicum annuum L.)和大豆(Glycine max)间作系统中生长、叶绿素荧光及产量的影响,评估了氮沉降对土壤和植物特征的调控作用。主要研究结果如下:(1)在花椒单作系统中,氮沉降使土壤硝态氮(NO3)含量增加346.5%,显著改变了叶绿素荧光参数并引起土壤酸化;(2)在花椒-辣椒间作系统中,氮沉降明显促进了辣椒的根系生长(增加261.5%),并影响了两种作物的叶绿素荧光表现;(3)在花椒-大豆间作系统中,氮沉降对大豆的固氮能力产生抑制作用,导致花椒产量大幅下降89.3%,并改变了叶绿素荧光参数。总体而言,花椒-辣椒间作系统通过提高土壤硝态氮含量改善了作物生长环境,而花椒-大豆间作系统由于氮沉降对共生固氮的不利影响,产量受到抑制。上述研究结果为应对环境变化下的作物优化及增产策略提供了科学依据。

关键词: 花椒(Zanthoxylum bungeanum Maxim.), 氮, 间作系统, 光合作用, 产量

Abstract: The study aimed to thoroughly investigate the effects of nitrogen deposition on the growth, chlorophyll fluorescence and yield of Zanthoxylum bungeanum Maxim. in both monoculture and intercropping systems with Capsicum annuum L. and Glycine max. The research provided a detailed evaluation of how nitrogen deposition influenced soil and plant parameters within these intercropping systems. Key findings include: (i) In the Z. bungeanum monoculture, nitrogen deposition led to a 346.5% increase in soil NO3 levels, significantly affecting chlorophyll fluorescence parameters and decreasing soil pH. (ii) In the Z. bungeanum–C. annuum intercropping system, nitrogen deposition influenced the growth and chlorophyll fluorescence of both crops and resulted in a 261.5% increase in the root length of C. annuum. (iii) In the Z. bungeanum–G. max system, nitrogen deposition negatively impacted the chlorophyll fluorescence of G. max, reduced Z. bungeanum yields by 89.3% and altered its chlorophyll fluorescence parameters. These changes likely hindered the nitrogen-fixing capacity of G. max due to altered soil conditions. Overall, the Z. bungeanum–C. annuum system showed superior performance by enhancing soil NO3-N content. In contrast, the Z. bungeanum–G. max system experienced reduced yields due to the adverse effects of nitrogen deposition on symbiotic nitrogen fixation. These findings are crucial for developing agricultural strategies aimed at improving crop adaptability and yield in response to environmental changes.

Key words: Zanthoxylum bungeanum, nitrogen, intercropping system, photosynthesis, yield