Journal of Plant Ecology ›› 2023, Vol. 16 ›› Issue (1): 0-.DOI: 10.1093/jpe/rtac056
• •
Guodong Zhang1, Guiyao Zhou2,*, Xuhui Zhou2,3,*, Lingyan Zhou2, Junjiong Shao2, Ruiqiang Liu3, Jing Gao2, Yanghui He3, Zhenggang Du3, Jianwei Tang4 and Manuel Delgado-Baquerizo5
摘要:
Tropical forests are among the most productive and vulnerable ecosystems in the planet. Several global forestation programs are aiming to plant millions of trees in tropical regions in the future decade. Mycorrhizal associations are known to largely influence forest soil carbon (C) stocks. However, to date, little is known on whether and how different tree mycorrhizal types affect soil respiration (Rs) and C stocks in tropical forests. In this study, we used a three-decade tropical common garden experiment, with three arbuscular mycorrhizal (AM) and three ectomycorrhizal (EM) monocultures, to investigate the impacts of tree mycorrhizal type on Rs and soil C stocks. Associating biotic (e.g. root biomass, litter dynamic, soil microbes) and abiotic factors (e.g. microclimate) were also measured. Our results showed that AM stands supported significantly higher Rs and soil C stock, litter turnover rate and fine root biomass than EM stands. Further statistical analysis displayed that tree mycorrhizal type was the most important factor in regulating Rs and soil C stock compared with other biotic or abiotic factors. Moreover, we found that mycorrhizal type directly and indirectly affected Rs and soil C stocks via fine root biomass and litter dynamic, i.e. litter production, litter standing crop and litter turnover rate. Our findings highlight important effects of tree mycorrhizal type on forest C cycle, suggesting that planting AM tree species could contribute to promotion of soil C stock in tropical ecosystems.