Journal of Plant Ecology ›› 2022, Vol. 15 ›› Issue (6): 1185-1198.DOI: 10.1093/jpe/rtac039

• • 上一篇    下一篇

  

  • 收稿日期:2021-11-14 修回日期:2021-12-12 接受日期:2022-01-26 出版日期:2022-12-01 发布日期:2022-12-08

Using intraspecific variation of functional traits and environmental factors to understand the formation of nestedness patterns of a local forest community

Weitao Wang1 , Yun Jiang2 , Yongfa Chen1 , Wenqi Luo1 , Dong He3 , Youshi Wang1 , Chengjin Chu1, and Buhang Li1, *#br#   

  1. 1 State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
    2 Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China, 3 College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China

    * Corresponding author. E-mail: libuhang@mail.sysu.edu.cn
  • Received:2021-11-14 Revised:2021-12-12 Accepted:2022-01-26 Online:2022-12-01 Published:2022-12-08

摘要:

从功能性状的种内变异和环境因子的角度理解局域森林群落嵌套格局的成因

生态学中“嵌套”的概念源于生物地理学,指的是物种较少的斑块为物种较多斑块的嵌套子集, 在集合群落和生物互作网络中得到了广泛应用,嵌套格局的存在往往被认为有利于物种多样性的维持和 保证了网络结构的稳定性。目前,针对局域植物群落嵌套格局的研究较少,相关研究也很少将功能性 状和环境因子同时纳入考虑以探讨格局成因。本研究依托位于中国南部的黑石顶50公顷森林大样地, 将样地植物普查数据和位置信息转换为物种-样方矩阵,对该矩阵重排寻找到矩阵的最大嵌套结构。针对最大嵌套结构,使用零模型方法验证嵌套结构的显著性;根据物种和样方在最大嵌套结构内的排序, 划定物种和样方的嵌套等级。随后,使用回归树方法分别确定物种和样方嵌套等级与功能性状和环境 因子的联系,物种功能性状数据包括性状均值与性状种内变异。研究结果表明,黑石顶植物群落存在 显著的嵌套格局,回归树结果发现,样方嵌套等级与土壤速效磷、土壤水分含量、土壤有机质含量和 土壤pH相关,以上因子共解释了32%的样方嵌套等级变异;物种嵌套等级主要受物种功能性状的种内 变异而非性状均值影响,其中叶片碳含量、叶片pH、叶片干物质含量和最大光合速率的种内变异是主 导因素,它们共解释了物种嵌套等级变异的49%。以上结果说明,关键性的环境因子与物种对环境的适 应能力共同作用,使局域植物群落形成了嵌套格局。本研究从样方嵌套等级和物种嵌套等级的角度探讨 嵌套格局成因,为理解嵌套格局提供了新的角度,加深了研究者对于局域植物群落构建机制的理解。

关键词: 环境因子,  功能性状,  嵌套,  空间格局,  亚热带森林

Abstract: The concept of nestedness originated from the field of biogeography decades ago and has been widely used in metacommunities and biological interaction networks, but there is still a lack of research within local communities. Moreover, studies on nestedness usually rarely incorporate the functional traits of the species and the environmental characteristics of the sites. In this study, we constructed a species presence–absence matrix of a 50-ha forest plot, used the simulated annealing algorithm to reveal the maximum nested structure and further tested the significance of nestedness patterns by constructing null ensembles. The nested ranks were used to represent the orders of species and quadrats in the maximum nestedness matrix. The regression tree analysis was used to reveal the relationships of nested ranks with environmental factors and functional traits. We found that the co-occurrence pattern of local plant communities was significantly nested. The regression tree results showed that the nested ranks of quadrats were determined by soil available phosphorus, soil water content, soil organic carbon and soil pH. Intraspecific variation of functional traits, including leaf C, leaf pH, leaf dry matter content and maximum photosynthetic rate rather than means of functional traits, provided a better explanation for the formation of species’ nested ranks. Understanding the causes of species and quadrats nested ranks provides novel lens and useful insights into ecological processes underlying nestedness, and further improves our knowledge of how local plant communities are assembled.

Key words: environmental factors,  functional traits,  nestedness,  spatial pattern,  subtropical forest