J Plant Ecol ›› 2020, Vol. 13 ›› Issue (2): 195-203 .DOI: 10.1093/jpe/rtz062

• Research Articles • Previous Articles     Next Articles

Climate drives differences in the germination niche of a globally distributed invasive grass

Rebecca A. Fletcher*, Kayla M. Varnon and Jacob N. Barney   

  1. Virginia Tech, School of Plant and Environmental Sciences, 675 Old Glade Rd, Blacksburg, VA 24061, USA

    *Corresponding author. E-mail: beckyfletcher4@gmail.com
  • Received:2019-07-31 Revised:2019-11-28 Accepted:2020-01-02 Online:2020-01-06 Published:2020-04-01



Exotic invasive species are often exposed to strong selection pressures in their new ranges that can often lead to substantial intraspecific variation. Population differentiation in the timing of life history events in response to climate gradients is thought to be an important mechanism facilitating the range expansion of many invasive species. For seed producing plants, the timing of seed germination determines the first environmental conditions experienced by newly emerged germinates, and can have important implications for the successful colonization, establishment and spread of invasive plants—though the role of germination in the success of invasive plants remains poorly understood.


We assessed the variation in seed germination dynamics among 10 populations of the invasive plant Johnsongrass (Sorghum halepense) across its North American distribution, capturing both a temperature and precipitation gradient, and whether that variation is associated with home climate. Seeds were exposed to a wide range of temperatures (11–48°C) and two water availability treatments.

Important Findings

We found that Johnsongrass seeds germinated across a wide range of temperatures, but there was substantial variation among populations in the proportion of seeds that germinated in response to both temperature and water availability. Evidence indicates that as Johnsongrass expanded its range from warmer climates into cooler climates, there was a concurrent shift in the germination temperature niche to cooler temperatures. Our results suggest that the germination of Johnsongrass seeds has adapted to home climate allowing this invader to maximize germination throughout its range, and that this may be an important contributing factor to its invasion into new environments.

Key words: adaptation, among-population variation, Johnsongrass, Sorghum halepense, temperature, water availability


外来入侵物种在入侵地经常面临很强的选择压力,这常常导致种内变异。在生活史事件发生的时间上,种群分化对气候梯度的响应被认为是促进许多入侵物种扩张的重要机制。对于产生种子的植物来说,种子萌发的时间决定了萌芽所经历的第一个环境条件,这对入侵植物的成功定植、种群建立和传播具有重要意义——尽管对于萌发在植物入侵成功中所起的作用仍然知之甚少。在本研究中,我们评估了入侵植物石茅(Sorghum halepense)在北美分布的10个种群的种子萌发在温度和降水梯度上的动态变化,以及这种变化是否与本地气候有关。种子被放置于一个较宽的温度范围(11-48˚C)以及两个水分梯度处理中。我们发现,石茅的种子可以在很宽的温度范围下萌发,但在不同的种群中,种子萌发的比例随温度和水分的不同而有较大的变化。有证据表明,当石茅的生长范围从温暖的气候扩展到寒冷的气候时,种子萌发温度的生态位也同时发生了向低温的转变。我们的研究结果表明,石茅种子的萌发已经适应了当地的气候,使其在整个生长范围内的萌发最大化,这可能是其入侵新环境的一个重要贡献因素。

关键词: 适应, 种群变异, 石茅, 温度, 水分有效性