J Plant Ecol ›› 2018, Vol. 11 ›› Issue (4): 511-523 .DOI: 10.1093/jpe/rtx030

• Research Articles •     Next Articles

Simulated N and S deposition affected soil chemistry and understory plant communities in a boreal forest in western Canada

Kangho Jung1,2,3, Jin-Hyeob Kwak1,3, Frank S. Gilliam3 and Scott X. Chang1,*   

  1. 1 Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada; 2 Divsion of Soil and Fertilizer, Department of Agricultural Environment, National Academy of Agricultural Science, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Republic of Korea;  3 Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA
  • Received:2016-10-01 Accepted:2017-05-02 Published:2018-05-23
  • Contact: Kwak, Jin-Hyeob

Simulated N and S deposition affected soil chemistry and understory plant communities in a boreal forest in western Canada

Abstract: Aims We conducted a simulated nitrogen (N) and sulfur (S) deposition experiment from 2006 to 2012 to answer the following questions: (i) does chronic N and S deposition decrease cation concentrations in the soil and foliage of understory plant species, and (ii) does chronic N and S deposition decrease plant diversity and alter species composition of the understory plant community in a boreal forest in western Canada where intensifying industrial activities are increasing N and S deposition?
Methods Our field site was a mixedwood boreal forest stand located ~100 km southeast of Fort McMurray, Alberta, Canada. The experiment involved a 2 × 2 factorial design, with two levels each of N (0 and 30 kg N ha-1 yr-1; applied as NH4NO3) and S addition (0 and 30 kg S ha-1 yr-1; applied as Na2SO4). Four blocks were established in July 2006, each with four plots of 20 × 20 m randomly assigned to the treatments. Soil and understory vegetation were sampled and cover (%) of individual species of herb (height ≤ 0.5 m) and shrub (height 0.5–1 m) layers was determined in August 2012.
Important findings Seven years after the treatments began, N addition increased dissolved organic carbon and N in the mineral soil (P < 0.05), whereas S addition decreased exchangeable cations (P < 0.05) in the forest floor. In the shrub layer, species evenness, and overall diversity were decreased by N addition (P < 0.05) due to increases in abundance of nitrophilous species and S addition (P < 0.01) due to decreased cation concentrations in soils. Total shrub cover decreased with S addition (P < 0.10). Nitrogen and S addition affected neither species richness nor evenness in the herb layer. However, permutational multivariate analysis of variance and non-metric multidimensional scaling analyses (based on plant cover) indicated that the effect of N and S addition on understory plant species composition in the both shrub and herb layers was species-specific. Addition of N decreased foliar phosphorus and potassium concentrations in some species, suggesting potential risk of N-meditated nutrient imbalance in those species. Our results indicate that long-term elevated levels of N and S deposition can negatively impact plant nutrition and decrease the diversity of the understory plant community in boreal forests in northern Alberta, Canada. However, considering that the current N and S deposition rates in northern Alberta are much lower than the rates used in this study, N and S deposition should not negatively affect plant diversity in the near future.

Key words: species diversity, nutrient imbalance, cation leaching, understory foliar chemistry, acid deposition, soil acidification

摘要:
Aims We conducted a simulated nitrogen (N) and sulfur (S) deposition experiment from 2006 to 2012 to answer the following questions: (i) does chronic N and S deposition decrease cation concentrations in the soil and foliage of understory plant species, and (ii) does chronic N and S deposition decrease plant diversity and alter species composition of the understory plant community in a boreal forest in western Canada where intensifying industrial activities are increasing N and S deposition.
Methods Our field site was a mixedwood boreal forest stand located ~100 km southeast of Fort McMurray, Alberta, Canada. The experiment involved a 2 × 2 factorial design, with two levels each of N (0 and 30 kg N ha-1 yr-1; applied as NH4NO3) and S addition (0 and 30 kg S ha-1 yr-1; applied as Na2SO4). Four blocks were established in July 2006, each with four plots of 20 × 20 m randomly assigned to the treatments. Soil and understory vegetation were sampled and cover (%) of individual species of herb (height ≤ 0.5 m) and shrub (height 0.5–1 m) layers was determined in August 2012.
Important findings Seven years after the treatments began, N addition increased dissolved organic carbon and N in the mineral soil (P < 0.05), whereas S addition decreased exchangeable cations (P < 0.05) in the forest floor. In the shrub layer, species evenness, and overall diversity were decreased by N addition (P < 0.05) due to increases in abundance of nitrophilous species and S addition (P < 0.01) due to decreased cation concentrations in soils. Total shrub cover decreased with S addition (P < 0.10). Nitrogen and S addition affected neither species richness nor evenness in the herb layer. However, permutational multivariate analysis of variance and non-metric multidimensional scaling analyses (based on plant cover) indicated that the effect of N and S addition on understory plant species composition in the both shrub and herb layers was species-specific. Addition of N decreased foliar phosphorus and potassium concentrations in some species, suggesting potential risk of N-meditated nutrient imbalance in those species. Our results indicate that long-term elevated levels of N and S deposition can negatively impact plant nutrition and decrease the diversity of the understory plant community in boreal forests in northern Alberta, Canada. However, considering that the current N and S deposition rates in northern Alberta are much lower than the rates used in this study, N and S deposition should not negatively affect plant diversity in the near future.