J Plant Ecol ›› 2016, Vol. 9 ›› Issue (5): 636-647 .DOI: 10.1093/jpe/rtw003

• Research Articles • Previous Articles    

Enemy release at range edges: do invasive species escape their herbivores as they expand into new areas?

Justin S. H. Wan and Stephen P. Bonser*   

  1. Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales 2052, Australia
  • Received:2014-10-01 Accepted:2016-01-09 Published:2016-09-20
  • Contact: Bonser, Stephen

Enemy release at range edges: do invasive species escape their herbivores as they expand into new areas?

Abstract: Aims We test the hypothesis that invasive plant species at their range edges experience lower herbivory and allocate less to defense at the edge of an expanding range edge than from more central parts of their distribution, during secondary invasion in a new range. Invasive plants are often able to spread rapidly through new areas. The success of invasive species in new ranges is frequently attributed to enemy release in these new areas and associated evolutionary changes minimizing allocation to defense in favor of growth and reproduction. Enemy release could also explain rapid advances of invasive species upon arriving in new habitats. If invasive species accumulate enemies over time in a new location, then these species may experience a release from their enemies at expanding range fronts. Enemy release at these range fronts may accelerate range expansion.
Methods We used populations of four woody invasive species within the invaded range, and four native control species. We quantified leaf herbivory and leaf physical defense traits at both range central and range edge locations, over two 1-month sampling periods, sampled 7 months apart.
Important findings Herbivory at the range edge did not differ to the range center but patterns were not consistent across species. There was a trend for lower herbivory at the range edge for Lantana camara, which was reflected in lower leaf toughness. Overall, leaf toughness was greater at the range edge location across invasive and control species. Physical defenses were different among range locations in a few species, though most species show the same trend, suggesting higher herbivory pressures at the range edge location or differences may be due to climatic factors. Leaves of L. camara were significantly less tough at range edges, suggesting that some species can potentially escape their enemies at range edges. However, our results overall do not support the hypothesis that plants at the edge of their ranges experience reduced impact from their enemies.

Key words: Australian woodlands, enemy release hypothesis, herbivory, invasion dynamics, physical defense, range edge

摘要:
Aims We test the hypothesis that invasive plant species at their range edges experience lower herbivory and allocate less to defense at the edge of an expanding range edge than from more central parts of their distribution, during secondary invasion in a new range. Invasive plants are often able to spread rapidly through new areas. The success of invasive species in new ranges is frequently attributed to enemy release in these new areas and associated evolutionary changes minimizing allocation to defense in favor of growth and reproduction. Enemy release could also explain rapid advances of invasive species upon arriving in new habitats. If invasive species accumulate enemies over time in a new location, then these species may experience a release from their enemies at expanding range fronts. Enemy release at these range fronts may accelerate range expansion.
Methods We used populations of four woody invasive species within the invaded range, and four native control species. We quantified leaf herbivory and leaf physical defense traits at both range central and range edge locations, over two 1-month sampling periods, sampled 7 months apart.
Important findings Herbivory at the range edge did not differ to the range center but patterns were not consistent across species. There was a trend for lower herbivory at the range edge for Lantana camara, which was reflected in lower leaf toughness. Overall, leaf toughness was greater at the range edge location across invasive and control species. Physical defenses were different among range locations in a few species, though most species show the same trend, suggesting higher herbivory pressures at the range edge location or differences may be due to climatic factors. Leaves of L. camara were significantly less tough at range edges, suggesting that some species can potentially escape their enemies at range edges. However, our results overall do not support the hypothesis that plants at the edge of their ranges experience reduced impact from their enemies.