J Plant Ecol ›› 2016, Vol. 9 ›› Issue (4): 410-420 .DOI: 10.1093/jpe/rtv066

• Research Articles • Previous Articles     Next Articles

Marine influence controls plant phenological dynamics in Mediterranean Mexico

Sula E. Vanderplank1,2,* and Exequiel Ezcurra2   

  1. 1 Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA; 2 Department of Botany and Plant Sciences, University of California, 900 University Ave, Riverside CA 92521, USA
  • Received:2015-06-07 Accepted:2015-09-26 Published:2016-07-19
  • Contact: Vanderplank, Sula

Marine influence controls plant phenological dynamics in Mediterranean Mexico

Abstract: Aims To assess the role of moisture in phenological timing in the mediterranean coastal flora of Baja California, and specifically to assess the role of coastal fog and ocean-derived moisture in plant phenology. Moisture seems to be the primary driver of flowering times and durations at the arid end of the mediterranean-climate region, where rainfall is often sporadic (temperature and day length can be expected to play a much lesser role as they are not growth limiting). We aimed to understand: What factors drive climatic variation between sites? Are there general flowering patterns allowing us to identify phenological categories? Do flowering patterns vary in relation to site-specific weather? and most importantly, does maritime influence on weather affect flowering dynamics in coastal mediterranean ecosystems?
Methods The southernmost extent of the California Floristic Province (in Baja California, Mexico) is a biological diversity hotspot of high endemism and conservation value, with two steep moisture gradients: rainfall (N–S) and coastal fogs (W–E), providing an ideal study system. We installed five weather stations across the moisture gradients, recording data hourly. We monitored flowering phenology in the square kilometer surrounding each weather station from 2010 to 2013. About 86 plant taxa were monitored across the five sites, every 6–8 weeks. Averaged climatic data is presented with general trends in flowering, and specific flowering syndromes were observed. Data for flowering intensity across the sites was analyzed using a principal components analysis.
Important findings Data analysis demonstrates a general seasonal pattern in flowering times, but distinct differences in local weather and phenology between the five study sites. Three flowering syndromes are revealed in the flora: (i) water responders or spring bloomers, (ii) day-length responders or fall-blooming taxa and (iii) aseasonal bloomers with no seasonal affinity. The two moisture gradients are the strongest drivers of flowering times. Inland sites showed higher phenological variation than coastal sites where seasonality is dampened by ocean-derived moisture, which extends and buffers perennial plant phenology and is a probable driver of local endemism. Phenological controls vary globally with climate and geography; moisture is the primary driver of phenology in mediterranean climates and fog is an important climatic variable in coastal Mexico.

Key words: flowering times, Baja California, maritime succulent scrub, moisture gradient

摘要:
Aims To assess the role of moisture in phenological timing in the mediterranean coastal flora of Baja California, and specifically to assess the role of coastal fog and ocean-derived moisture in plant phenology. Moisture seems to be the primary driver of flowering times and durations at the arid end of the mediterranean-climate region, where rainfall is often sporadic (temperature and day length can be expected to play a much lesser role as they are not growth limiting). We aimed to understand: What factors drive climatic variation between sites? Are there general flowering patterns allowing us to identify phenological categories? Do flowering patterns vary in relation to site-specific weather? and most importantly, does maritime influence on weather affect flowering dynamics in coastal mediterranean ecosystems?
Methods The southernmost extent of the California Floristic Province (in Baja California, Mexico) is a biological diversity hotspot of high endemism and conservation value, with two steep moisture gradients: rainfall (N–S) and coastal fogs (W–E), providing an ideal study system. We installed five weather stations across the moisture gradients, recording data hourly. We monitored flowering phenology in the square kilometer surrounding each weather station from 2010 to 2013. About 86 plant taxa were monitored across the five sites, every 6–8 weeks. Averaged climatic data is presented with general trends in flowering, and specific flowering syndromes were observed. Data for flowering intensity across the sites was analyzed using a principal components analysis.
Important findings Data analysis demonstrates a general seasonal pattern in flowering times, but distinct differences in local weather and phenology between the five study sites. Three flowering syndromes are revealed in the flora: (i) water responders or spring bloomers, (ii) day-length responders or fall-blooming taxa and (iii) aseasonal bloomers with no seasonal affinity. The two moisture gradients are the strongest drivers of flowering times. Inland sites showed higher phenological variation than coastal sites where seasonality is dampened by ocean-derived moisture, which extends and buffers perennial plant phenology and is a probable driver of local endemism. Phenological controls vary globally with climate and geography; moisture is the primary driver of phenology in mediterranean climates and fog is an important climatic variable in coastal Mexico.