J Plant Ecol ›› 2016, Vol. 9 ›› Issue (3): 333-345.DOI: 10.1093/jpe/rtv057

• Research Articles • Previous Articles     Next Articles

Variation of a floral polymorphism at different spatial scales in the Mediterranean geophyte Narcissus assoanus

Regina Berjano1,2,*, Perrine Gauthier1, Chiara Parisi1, Valentine Vaudey1, Virginie Pons1, Alain Renaux1, David Doblas1 and John D. Thompson1   

  1. 1 UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France; 2 Departamento de Biología Vegetal y Ecología, University of Seville, Apdo 1095. 41080 Seville, Spain
  • Received:2015-01-07 Accepted:2015-08-02 Published:2016-05-25
  • Contact: Berjano, Regina

Abstract: Aims Habitat fragmentation impacts the spatial extent and isolation of local populations and communities. Although the biological consequences of these impacts have been well studied at the site level, effects directly related to changes in the spatial configuration of populations in the landscape remain less clear. The objective of this study is to examine how changes in the spatial-scale configuration of populations are associated with variability in morph rations in the floral polymorphic Mediterranean geophyte Narcissus assoanus .
Methods We performed a nested analysis of morph ratio variation at three spatial scales: a 50×50 km regional scale in SE France, in fourteen 1×1 km landscapes located in the same region, and within 12 spatially extensive population patches. We also quantified variation in the behaviour of pollinators in population patches of contrasting spatial configuration.
Important findings At a regional scale, morph ratios show a geographic pattern of increasing isoplethy (1:1 morph ratio) away from centres of human population development and in upland pastures. At the landscape scale, isoplethy of local population patches is more correlated with decreased isolation among patches than with patch size. Finally, within local isoplethic populations, small patches can show significantly biased morph ratios. In small isolated patches, pollinators perform shorter flight distances among consecutive flower visits than in spatially extensive patches. This study of variation in a genetic polymorphism at multiple spatial scales provides new insights into the scale-dependent effects of habitat fragmentation and the potential occurrence of metapopulation dynamics in natural plant populations.

Key words: flower polymorphism, habitat fragmentation, Mediterranean, Narcissus, stigma-height polymorphism

摘要:
Aims Habitat fragmentation impacts the spatial extent and isolation of local populations and communities. Although the biological consequences of these impacts have been well studied at the site level, effects directly related to changes in the spatial configuration of populations in the landscape remain less clear. The objective of this study is to examine how changes in the spatial-scale configuration of populations are associated with variability in morph rations in the floral polymorphic Mediterranean geophyte Narcissus assoanus .
Methods We performed a nested analysis of morph ratio variation at three spatial scales: a 50×50 km regional scale in SE France, in fourteen 1×1 km landscapes located in the same region, and within 12 spatially extensive population patches. We also quantified variation in the behaviour of pollinators in population patches of contrasting spatial configuration.
Important findings At a regional scale, morph ratios show a geographic pattern of increasing isoplethy (1:1 morph ratio) away from centres of human population development and in upland pastures. At the landscape scale, isoplethy of local population patches is more correlated with decreased isolation among patches than with patch size. Finally, within local isoplethic populations, small patches can show significantly biased morph ratios. In small isolated patches, pollinators perform shorter flight distances among consecutive flower visits than in spatially extensive patches. This study of variation in a genetic polymorphism at multiple spatial scales provides new insights into the scale-dependent effects of habitat fragmentation and the potential occurrence of metapopulation dynamics in natural plant populations.