J Plant Ecol ›› 2012, Vol. 5 ›› Issue (3): 320-329 .DOI: 10.1093/jpe/rtr046

• Research Articles • Previous Articles     Next Articles

Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe

Jie Bi?, Naili Zhang?, Yu Liang*, Haijun Yang and Keping Ma   

  1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
  • Received:2011-10-21 Accepted:2011-11-13 Published:2012-07-09
  • Contact: Liang, Yu

Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe

Abstract: Aims Better understanding of microbial compositional and physiological acclimation mechanisms is critical for predicting terrestrial ecosystem responses to global change. The aim is to assess variations in soil microbial communities under future scenarios of changing precipitation and N deposition in a semiarid grassland of northern China.
Methods In order to explicitly estimate microbial responses, a field experiment with water and N addition was established in April 2005 and continuously conducted for 4 years. Specifically, soil microbial community composition and microbial C utilization potential were determined by phospholipid fatty acid (PLFA) and community-level physiological profiles, respectively.
Important findings Water addition had no effects on the PLFA concentrations of gram-positive (GP) and negative bacteria (GN), total bacteria and fungi. However, N addition caused significant reductions in the PLFA concentrations of GP, GN, total bacteria and fungi and thus decreased total PLFA of microbial communities. Moreover, there were interactive effects of water and N addition on GN/GP and the ratio of fungal to bacterial PLFA (F/B). In addition, synergistic effects were found between water and nitrogen in affecting microbial C utilization potentials, which implies that microbial C utilization potentials tend to be enhanced when both N and water availability are sufficient. Overall, the microbial responses to water and N addition support our hypothesis that water and N addition may be combined together to affect microbial communities in the semiarid grassland.

Key words: microbial PLFA composition, microbial C utilization potentials, N addition, water addition, semiarid grassland

摘要:
Aims Better understanding of microbial compositional and physiological acclimation mechanisms is critical for predicting terrestrial ecosystem responses to global change. The aim is to assess variations in soil microbial communities under future scenarios of changing precipitation and N deposition in a semiarid grassland of northern China.
Methods In order to explicitly estimate microbial responses, a field experiment with water and N addition was established in April 2005 and continuously conducted for 4 years. Specifically, soil microbial community composition and microbial C utilization potential were determined by phospholipid fatty acid (PLFA) and community-level physiological profiles, respectively.
Important findings Water addition had no effects on the PLFA concentrations of gram-positive (GP) and negative bacteria (GN), total bacteria and fungi. However, N addition caused significant reductions in the PLFA concentrations of GP, GN, total bacteria and fungi and thus decreased total PLFA of microbial communities. Moreover, there were interactive effects of water and N addition on GN/GP and the ratio of fungal to bacterial PLFA (F/B). In addition, synergistic effects were found between water and nitrogen in affecting microbial C utilization potentials, which implies that microbial C utilization potentials tend to be enhanced when both N and water availability are sufficient. Overall, the microbial responses to water and N addition support our hypothesis that water and N addition may be combined together to affect microbial communities in the semiarid grassland.