J Plant Ecol ›› Advance articles     DOI:10.1093/jpe/rtaf201

• Research Articles •    

Role of submerged macrophytes with different growth forms in CO2 and CH4 emissions: Insights from a year-long mesocosm study

Fei Diao1,2, Tian Qian1,2, Wenjuan Qiu1,2, Ailifeire Anwaier1,2, Baohua Guan1,2, Xiaolong Huang1, Peng Xing1, Qinglong Wu1, Yaling Su1*, Kuanyi Li1,2*   

  1. 1Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 211135, China

    2University of Chinese Academy of Science, Beijing 100049, China

    *Correspondence: Yaling Su, Kuanyi Li, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, 299 Chuangzhan Road, Qilin Subdistrict, Jiangning District, Nanjing, China. Email: ylsu@niglas.ac.cn, kyli@niglas.ac.cn

  • Received:2025-06-11 Accepted:2025-11-16 Online:2025-11-25 Published:2025-11-25
  • Supported by:
    This work was supported by the National Science Foundation of China [32330068 and 32471640] and Jiangsu Provincial Science and Technology Planning Project [BK20231515 and BK20231516].

Abstract: Submerged macrophytes play a vital role in the carbon cycling of lake ecosystems. However, the extent to which contrasting macrophyte growth forms—bottom-dwelling versus canopy-forming—control annual CO2 and CH4 emissions is unresolved, limiting evidence-based guidance for lake restoration aimed at carbon mitigation. We conducted a fully replicated, year-long outdoor mesocosm experiment under natural temperature and light regimes to quantify greenhouse-gas fluxes from monospecific stands of four widespread macrophytes: bottom-dwelling Vallisneria denseserrulata and canopy-forming Ceratophyllum demersum, Myriophyllum spicatum and Hydrilla verticillata. Monthly diffusive flux measurements were integrated with high-resolution data on water chemistry, macrophyte biomass, zooplankton, phytoplankton and the functional genes mcrA and pmoA for methanogenic and methanotrophic communities. Canopy-forming macrophytes reduced annual CO2 fluxes by 5-13 mol m-2 yr-1 relative to bottom-dwelling treatments, with Hydrilla and Myriophyllum systems functioning as net carbon sinks (negative CO2-equivalent balance), whereas Vallisneria and Ceratophyllum remained sources. Canopy-forming macrophytes exhibited higher biomass than bottom-dwelling forms, enabling greater nutrient uptake and correspondingly higher CO2 fixation via photosynthesis. CH4 release was strongly modulated by plant biomass and associated redox conditions. These results demonstrate that canopy-forming macrophytes offer superior potential for CO2 mitigation and CO2-equivalent balance, providing essential trade-off information for managers selecting plant assemblages for climate-smart lake restoration.

Key words: lake, submerged macrophyte, growth forms, greenhouse gas, diffusive flux

摘要:
沉水植物在湖泊生态系统的碳循环过程中发挥着至关重要的作用。然而,不同生长型的沉水植物——底栖型与顶冠型——在调控CO2和CH4排放方面的作用尚未明确,这限制了以碳减排为目标的湖泊生态修复的科学指导。我们在自然温度和光照条件下开展了一项为期一年的室外中宇宙实验,采用完全重复的平行设计,量化了4种广泛分布的单种沉水植物群落的温室气体通量:底栖型的密刺苦草(Vallisneria denseserrulata)以及冠层型的金鱼藻(Ceratophyllum demersum)、穗花狐尾藻(Myriophyllum spicatum)和轮叶黑藻(Hydrilla verticillata)。我们将每月测量的温室气体扩散通量与水体理化参数、植物生物量、浮游动物、浮游植物以及产甲烷菌和甲烷氧化菌功能基因(mcrApmoA)的数据相结合。与底栖型植物相比,冠层型植物可将年均CO2通量减少5 ∼ 13 mol m–2 yr–1,其中轮叶黑藻和穗花狐尾藻系统表现为净碳汇(CO2当量通量为负值),而密刺苦草和金鱼藻仍为碳源。冠层型植物具有更高的生物量,能够更有效地吸收营养物质,并通过光合作用固定更多CO2。CH4的释放则受到植物生物量及其相关的氧化还原条件的显著调控。研究结果表明,冠层型沉水植物在减少CO2通量和CO2当量平衡方面具有更优的潜力,为管理者在选择用于气候友好型湖泊修复的植物组合时提供了关键的权衡信息。

关键词: 湖泊, 沉水植物, 生长型, 温室气体, 扩散通量