J Plant Ecol ›› Advance articles     DOI:10.1093/jpe/rtaf141

• Research Article •    

Nitrogen and biochar interactions promote the stabilization of the temperature sensitivity of soil respiration

Chen Hua,b, Jinyu Gonga, Zhiyuan Maa, Linxuan Hea, Jingpin Leia,c*, Hongxia Cuib,d*   

  1. aResearch Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Forest Silviculture of the State Forestry and Grassland Administration, Beijing 100091, China 
    bHubei Academy of Forestry, Wuhan 430000, China 
    cCo-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China 

    dHubei Shennongjia Forestry Ecosystem Research Station, Shennongjia 442421, China 


    *Corresponding authors. E-mail: leijp@caf.ac.cn (J.L.); chxlky@163.com (H.C.) 
  • Received:2025-03-27 Accepted:2025-08-22 Online:2025-08-22 Published:2025-08-22
  • Supported by:
    This research was supported by the National Key R&D Program of China (2023YFD2200405) and the Science and Technology Research Project of Hubei Academy of Forestry (2021YGG05). 

氮与生物炭相互作用促进了土壤呼吸温度敏感性的稳定

Abstract: Nitrogen (N) deposition and climate warming threaten plantation soil organic carbon (SOC) stability. Soil respiration (Rs), the primary pathway for SOC decomposition, remains poorly understood in terms of regulatory mechanisms. Biochar may mitigate N deposition impacts. However, the mechanisms by which the interactive effects of N and biochar influence Rs through soil microbial community structure, enzyme activity, and C-N-P cycling processes, as well as the temperature sensitivity (Q10) of Rs under these interactions, remain unclear. This study investigated these issues through a five-year controlled experiment simulating N deposition and biochar addition in a Larix kaempferi plantation, integrating changes in soil C-cycle-related properties and their interactions. The results revealed that low N addition (LN: 50 kg N ha−1 a−1) increased Rs by 7%, while high N addition (HN: 100 kg N ha−1 a−1) reduced it by 32%. Low and high biochar treatments (C5: 5 t ha−1; C10: 10 t ha−1) increased Rs by 8% and 13%, respectively. N and biochar interactions consistently suppressed Rs, reducing it by 12%−20%. LN, C5 and C10 enhanced Q10, whereas HN decreased it. Additionally, N and biochar interactions stabilized Q10. N addition directly or indirectly inhibited microbial biomass and aggregate stability by elevating available phosphorus and NO3-N content, while biochar’s potential to promote SOC was constrained by its diminishing effects over time. Both factors collectively influenced Rs through a chemical-microbial interaction network. This study elucidates the cascading mechanisms linking soil microbial-physicochemical-Rs under N and biochar additions, providing insights for managing soil C emissions under rising temperatures.

Key words: soil respiration, temperature sensitivity, microbial community, subtropical plantation, biochar amendment

摘要:
中国人工林面积位居世界首位,但氮(N)沉降加剧和气候变暖等共同威胁其土壤有机碳(SOC)库的稳定性。土壤呼吸(Rs)是SOC分解的主要途径,其调控机制仍未阐明。生物炭因其改良土壤养分和调节微生物群落的特性,被认为可缓解N沉降的负面影响。然而,N和生物炭交互作用如何通过土壤微生物群落结构、酶活性及碳氮磷循环过程来影响土壤呼吸的机制,以及土壤呼吸温度敏感性(Q10)在二者作用下的响应规律仍不明确。本研究以日本落叶松(Larix kaempferi)人工林为研究对象,通过为期5年模拟N沉降和生物炭添加的控制实验,结合土壤碳循环相关性质的变化特征和互作关系,探究上述问题。结果表明:低N添加(LN: 50 kg N ha−1 a−1)使Rs增加了7%,高N添加(HN: 100 kg N ha−1 a−1)则使Rs降低了32%;低生物炭(C5: 5 t ha−1)和高生物炭(C10: 10 t ha−1)分别使Rs增加了8%和13%;N和生物炭交互处理均表现出抑制作用,使Rs降低了12%−20%。LN、C5、C10均增强了Q10,HN则降低了该值。此外,N和生物炭的交互处理有利于维持Q10的稳定。N和生物炭添加对土壤碳循环的影响机制呈多种路径:N添加通过提升AP、NO3-N含量直接或间接抑制微生物生物量及团聚体稳定性,而生物炭对SOC的潜在促进作用受限于其效应衰减,N和生物炭共同通过化学-微生物互作网络影响Rs。本研究阐明了N和生物炭添加下土壤微生物−理化−呼吸的级联响应机制,为在N沉降和潜在的温度升高情况下的土壤碳排放管理提供了参考。

关键词: 土壤呼吸, 温度敏感性, 微生物群落, 亚热带人工林, 生物炭改良