J Plant Ecol ›› 2022, Vol. 15 ›› Issue (3): 596-609 .DOI: 10.1093/jpe/rtab046

• Research Articles • Previous Articles     Next Articles

Bacillus promotes invasiveness of exotic Flaveria bidentis by increasing its nitrogen and phosphorus uptake

Xue Chen1, Qiao Li2, Yan Wang1, Fengxin Chen1, Xiaoya Zhang1 and Fengjuan Zhang1,*   

  1. 1 College of Life Science, Hebei University, Baoding, Hebei 071002, China, 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    *Corresponding author. E-mail: fengjuanzhang@126.com
  • Received:2021-01-07 Revised:2021-02-26 Accepted:2021-04-06 Online:2021-04-24 Published:2022-06-01

Abstract: The effect of exotic plants on Bacillus diversity in the rhizosphere and the role of Bacilli in exotic or native plant species remain poorly understood. Flaveria bidentis is an invasive grass in China. Setaria viridis is a native grass and occurs in areas invaded by F. bidentis. Our objectives were (i) to examine the differences in the Bacillus communities between F. bidentis and S. viridis rhizospheres soil, and (ii) to compare the effects of Bacilli from F. bidentis and S. viridis rhizospheres on the competitiveness of the invasive species. Flaveria bidentis monoculture, mixture of F. bidentis and S. viridis and S. viridis monoculture were designed in the field experiment. Bacillus diversity in their rhizosphere was analyzed using 16S rRNA. One of the dominant Bacilli in the rhizosphere soil of F. bidentis was selected to test its effect on the competitive growth of F. bidentis in a greenhouse experiment. Bacillus diversity differed in F. bidentis and S. viridis rhizosphere. Brevibacterium frigoritolerans was the dominant Bacilli in the rhizosphere of both F. bidentis and S. viridis; however, its relative abundance in the F. bidentis rhizosphere was much higher than that in the S. viridis rhizosphere. In addition, B. frigoritolerans in the F. bidentis rhizosphere enhanced the growth of the plant compared with that of S. viridis by improving the nitrogen and phosphorus levels. This study showed that F. bidentis invasion influenced Bacillus communities, especially B. frigoritolerans, which, in turn, facilitated F. bidentis growth by increasing the levels of available nitrogen and phosphorus.

Key words: Flaveria bidentis, Bacillus, competitive growth, available nutrient, rhizosphere soil

摘要:
芽孢杆菌通过提高黄顶菊对氮和磷的吸收促进外来黄顶菊的入侵
外来植物入侵对土壤芽孢杆菌(Bacillus)多样性的影响及芽孢杆菌在外来植物入侵中的作用目前尚不清楚。黄顶菊(Flaveria bidentis)是入侵中国的有害杂草,狗尾草(Setaria viridis)是黄顶菊入侵地常见的伴生植物种。本研究利用野外大田试验和温室盆栽试验,比较黄顶菊和狗尾草根际土壤芽孢杆菌群落结构的差异,以及黄顶菊和狗尾草根际土壤芽孢杆菌对黄顶菊竞争生长的影响。野外大田试验包括黄顶菊 单种、黄顶菊和狗尾草混种、狗尾草单种3个处理。利用16S rRNA基因测序技术研究了不同处理两种植物 根际土壤芽孢杆菌的多样性,获知黄顶菊根际土壤聚集的优势芽孢杆菌;利用温室盆栽试验探究优势芽孢杆菌对黄顶菊竞争生长的影响。研究结果表明,黄顶菊和狗尾草根际土壤芽孢杆菌多样性差异显著,其中耐寒芽孢杆菌是黄顶菊和狗尾草根际土壤聚集的优势芽孢杆菌,但是黄顶菊根际土壤中耐寒芽孢杆菌相对丰度显著高于狗尾草根际土壤耐寒芽孢杆菌的相对丰度。接菌试验表明,与狗尾草根际土壤中的耐寒芽孢杆菌相比,黄顶菊根际土壤聚集的耐寒芽孢杆菌提高了黄顶菊体内氮和磷的水平。总之,黄顶菊入侵改变了根际土壤芽孢杆菌的群落结构,黄顶菊根际土壤聚集的耐寒芽孢杆菌通过提高黄顶菊植株体内氮、磷水平来促进黄顶菊的生长。

关键词: 黄顶菊(Flaveria bidentis), 芽孢杆菌(Bacillus), 竞争生长, 可利用养分, 根际土壤