J Plant Ecol ›› 2020, Vol. 13 ›› Issue (4): 460-469.DOI: 10.1093/jpe/rtaa034

• Research Articles • Previous Articles     Next Articles

Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii

Rina Suzuki1 and Koichi Takahashi2,3,*   

  1. 1 Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan, 2 Department of Biology, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan, 3 Department of Mountain Ecosystem, Institute for Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan

    *Corresponding author. E-mail: koichit@shinshu-u.ac.jp
  • Received:2019-11-26 Revised:2020-05-05 Accepted:2020-06-22 Online:2020-06-28 Published:2020-08-01



Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions, such as high elevations and extended periods of darkness. Two evergreen coniferous species, Abies veitchii and Abies mariesii, dominate at low and high elevations, respectively, in the subalpine zone, central Japan. The aim of this study is to examine the effects of leaf age, elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.


We here examined effects of leaf age, elevation and light conditions on photosynthesis, and leaf traits in A. veitchii and A. mariesii. Saplings of the two conifers were sampled in the understory and canopy gaps at their lower (1600 m) and upper (2300 m) distribution limits.

Important Findings

The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits. The maximum photosynthetic rate of A. veitchii is correlated negatively with leaf mass per area (LMA) and non-structural carbohydrate (NSC) concentration. LMA increased at high elevations in the two species, whereas NSC concentrations increased only in A. veitchii. Therefore, the maximum photosynthetic rate of A. veitchiidecreased at high elevations. Furthermore, maximum photosynthetic rates correlate positively with nitrogen concentration in both species. In the understory, leaf nitrogen concentrations decreased and increased in A. veitchii and A. mariesii, respectively. LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A. mariesii, suggesting it has a higher light-capture efficiency in dark conditions than does A. veitchii. This study concluded that A. mariesiihas more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A. veitchii, allowing A. mariesii to survive in the understory and to dominate at high elevations.

Key words: leaf chlorophyll, leaf mass per area, leaf nitrogen, non-structural carbohydrate concentration, stable carbon–isotope ratio


亚高山的针叶树物种分布在广泛的海拔范围内,因此它们必须具备抵抗严酷自然条件(如高海拔和长期的黑暗)的能力。 在日本中部的亚高山地带,两种常绿的针叶树冷杉(Abies veitchii)和马尾冷杉(Abies mariesii)分别在低海拔和高海拔地区占据优势。本研究的目的是探讨叶龄、海拔和光照条件对两个物种叶片形态和生理性状的影响。我们以两种针叶树的幼树为样本,分别在两种针叶树下部 (1600米)和上部(2300米)的林下层和冠层间隙中取样,并分析叶龄、海拔和光照条件对冷杉和马尾冷杉的光合作用和叶片性状的影响。研究结果表明,两种针叶树的光合作用和叶片性状对叶龄呈现相似的响应,但其对海拔和光照条件则表现出不同的响应。冷杉最大光合速率与单位叶面积质量和非结构性碳水化合物浓度呈负相关。两种树木的单位叶面积质量在高海拔处均增加,而非结构性碳水化合物浓度仅在冷杉中增加。因此,冷杉的最大光合速率在高海拔时降低。此外,两个物种的最大光合速率均与氮浓度呈正相关。在林下层,叶片氮浓度在冷杉中下降,而在马尾冷杉中上升。在林下条件下,只有马尾冷杉的单位叶面积质量下降、叶绿素-氮比增加,表明在黑暗条件下,马尾冷杉比冷杉有更高的捕光效率。本研究表明,与冷杉相比,马尾冷杉的光合和叶片特性具有更强的耐阴性,光合速率受海拔的影响较小,从而使马尾冷杉在林下植被中生存,并在高海拔地区占据优势。

关键词: 叶片叶绿素, 单位叶面积质量, 叶氮, 非结构性碳水化合物浓度, 稳定碳同位素比率