J Plant Ecol ›› 2020, Vol. 13 ›› Issue (1): 42-50.doi: 10.1093/jpe/rtz041

• Research Articles • Previous Articles     Next Articles

Climatic niche shift of an invasive shrub (Ulex europaeus): a global scale comparison in native and introduced regions

Mathias Christina1,3,*, Fawziah Limbada2 and Anne Atlan2,4   

  1. 1 UMR ISPA, INRA, 71 Avenue Edouard Bourlaux, 33140 Villenave-d’ornon, France, 2 UMR ECOBIO, CNRS/Université Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes, France, 3 UPR AIDA, CIRAD, 40 Chemin Grand Canal, 97490 SainteClotilde, La Réunion, France, 4 UMR ESO, CNRS/Université Rennes 2, Place du Recteur Henri Le Moal, 35043 Rennes, France
  • Received:2019-04-11 Revised:2019-07-16 Accepted:2019-08-09 Online:2019-08-16 Published:2020-02-01

Abstract:

Aims

Invasive species, which recently expanded, may help understand how climatic niche can shift at the time scale of the current global change. Here, we address the climatic niche shift of an invasive shrub (common gorse, Ulex europaeus) at the world and regional scales to assess how it could contribute to increasing invasibility.

Methods

Based on a 28 187 occurrences database, we used a combination of 9 species distribution models (SDM) to assess regional climatic niche from both the native range (Western Europe) and the introduced range in different parts of the world (North-West America, South America, North Europe, Australia and New Zealand).

Important Findings

Despite being restricted to annual mean temperature between 4°C and 22°C, as well as annual precipitation higher than 300 mm/year, the range of bioclimatic conditions suitable for gorse was very large. Based on a native versus introduced SDM comparison, we highlighted a niche expansion in North-West America, South America and to a lesser degree in Australia, while a niche displacement was assessed in North Europe. These niche changes induced an increase in potential occupied areas by gorse by 49, 111, 202 and 283% in Australia, North Europe, North-West America and South America, respectively. On the contrary, we found no evidence of niche change in New Zealand, which presents similar climatic condition to the native environment (Western Europe). This study highlights how niche expansion and displacement of gorse might increase invasibility at regional scale. The change in gorse niche toward new climatic conditions may result from adaptive plasticity or genetic evolution and may explain why it has such a high level of invasibility. Taking into account the possibility of a niche shift is crucial to improve invasive plants management and control.

Key words: plant invasion, invasibility, niche shift, species distribution models, ecological niche

摘要:

认识近期扩张的外来入侵物种将有助于了解在当前全球变化的时间尺度上,气候生态位如何漂移。本文中,我们研究了在世界和区域范围内,入侵灌木(常见的金雀花,Ulex europaeus)气候生态位漂移问题,用以评估其如何有助于增加入侵性。根据28,187个已存数据库,利用9种物种分布模型(SDM)的组合评估区域气候生态位,包括原产区域(西欧)和世界不同的引种地区(西北美洲、南美、北欧、澳洲和新西兰)。尽管金雀花生长要求的年均气温在4°C-22°C之间,年降水量超过300毫米,然而适合金雀花生长的生物气候条件范围非常广泛。基于原产地与引种地的SDM比较分析,我们发现在北-西美洲、南美和澳洲部分地区的金雀花生态位扩张,评估了其在北欧的生态位置换情况。这些生态位的改变使金雀花在澳洲、北欧、北美洲及南美洲的潜在占据面积分别增加了49%、111%、202%和283%。相反,我们在新西兰没有发现生态位变化的证据,那里的气候条件与原产地环境(西欧)相似。本研究强调在区域尺度上,金雀花生态位扩张和置换如何增加其入侵性。金雀花生态位向新的气候条件的变化可能与其适应可塑性或遗传进化有关,这可能也解释了为何金雀花的入侵性如此之高。综合考虑生态位漂移的可能性对于改善入侵植物的管理和控制至关重要。

关键词: 植物入侵, 入侵性, 生态位漂移, 物种分布模式, 生态位

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[2] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[3] Hu Yu-fan. Discoveries of Some Reproductive Organ Fossils of Cycads in China and on the Origin of Cycads[J]. Chin Bull Bot, 1995, 12(02): 43 -48 .
[4] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[5] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[6] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[7] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .
[8] ZHANG Bing-Chang, ZHAO Jian-Cheng, ZHANG Yuan-Ming, LI Min, ZHANG Jing. VERTICAL DISTRIBUTION OF ALGAE IN DIFFERENT LOCATIONS OF SAND DUNES IN THE GURBANTUNGGUT DESERT,XINJIANG, CHINA[J]. Chin J Plan Ecolo, 2008, 32(2): 456 -464 .
[9] LI Zheng, HAN Lin, LIU Yu-Hong, AN Shu-Qing, and LENG Xin. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China[J]. Chin J Plan Ecolo, 2012, 36(10): 1054 -1061 .
[10] DING Ning, JIANG Yuan-Mao, WEI Shao-Chong, CHEN Qian, and GE Shun-Feng. Effects of fractionated nitrogen application on leaf senescence and 15 N-urea uptake and utilization of apple rootstock―Malus hupenhensis[J]. Chin J Plan Ecolo, 2012, 36(12): 1286 -1292 .