J Plant Ecol ›› 2018, Vol. 11 ›› Issue (4): 524-532.doi: 10.1093/jpe/rtx033

• Research Articles • Previous Articles     Next Articles

Emergent interactions influence functional traits and success of dune building ecosystem engineers

Joseph K. Brown, Julie C. Zinnert* and Donald R. Young   

  1. Department of Biology, Virginia Commonwealth University, 1000 West Cary Street Richmond, VA 23284, USA
  • Received:2016-07-06 Accepted:2017-05-09 Online:2017-05-15 Published:2018-05-23
  • Contact: Zinnert, Julie E-mail:jczinnert@vcu.edu

Abstract: Aims Dune building processes are affected by interactions between the growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and sea spray. Research investigating how species interactions influence dune community structure and functional trait responses in high abiotic stress environments is minimal. We investigated how species interactions influence the functional trait responses of three dominant dune grasses to common abiotic stressors.
Methods We performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata Fern., Uniola paniculata L. and Spartina patens Muhl.) in different interspecific combinations, using sand burial and sea spray as abiotic stressors. Sand burial was applied once at the beginning of the study. Sea spray was applied three times per week using a calibrated spray bottle. Morphological functional trait measurements (leaf elongation, maximum root length, aboveground biomass and belowground biomass) were collected at the end of the study. The experiment continued from May 2015 to August 2015.
Important findings Species interactions between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata, indicating that interactions with U. paniculata could alter dune community structure. Furthermore, A. breviligulata had a negative interaction with S. patens, which decreased S. patens functional trait responses to abiotic stress. When all species occurred together, the interactions among species brought about coexistence of all three species. Our data suggest that species interactions can change traditional functional trait responses of dominant species to abiotic stress.

Key words: competition, coastal dunes, facilitation, intransitivity

摘要:
Aims Dune building processes are affected by interactions between the growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and sea spray. Research investigating how species interactions influence dune community structure and functional trait responses in high abiotic stress environments is minimal. We investigated how species interactions influence the functional trait responses of three dominant dune grasses to common abiotic stressors.
Methods We performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata Fern., Uniola paniculata L. and Spartina patens Muhl.) in different interspecific combinations, using sand burial and sea spray as abiotic stressors. Sand burial was applied once at the beginning of the study. Sea spray was applied three times per week using a calibrated spray bottle. Morphological functional trait measurements (leaf elongation, maximum root length, aboveground biomass and belowground biomass) were collected at the end of the study. The experiment continued from May 2015 to August 2015.
Important findings Species interactions between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata, indicating that interactions with U. paniculata could alter dune community structure. Furthermore, A. breviligulata had a negative interaction with S. patens, which decreased S. patens functional trait responses to abiotic stress. When all species occurred together, the interactions among species brought about coexistence of all three species. Our data suggest that species interactions can change traditional functional trait responses of dominant species to abiotic stress.

[1] Wei Xue, Lin Huang and Fei-Hai Yu. Importance of starting points in heterogeneous environments: interactions between two clonal plants with contrasting spatial architectures [J]. J Plant Ecol, 2020, 13(3): 323-330.
[2] Hua Ma, Li-Juan Cui, Xu Pan, Wei Li, Yu Ning and Jian Zhou. Effect of nitrate supply on the facilitation between two salt-marsh plants (Suaeda salsa and Scirpus planiculmis) [J]. J Plant Ecol, 2020, 13(2): 204-212.
[3] Susanna Vain, Iris Gielen, Jaan Liira, and Kristjan Zobel. Population-level performance of Arabidopsis thaliana (L.) Heynh in dense monocultures [J]. J Plant Ecol, 2020, 13(2): 241-246.
[4] Yong Zhou, Xia Li, Hui Liu, Yubao Gao, Wade J. Mace, Stuart D. Card and Anzhi Ren. Effects of endophyte infection on the competitive ability of Achnatherum sibiricum depend on endophyte species and nitrogen availability [J]. J Plant Ecol, 2019, 12(5): 815-824.
[5] Ling-Yun Wan, Shan-Shan Qi, Chris B. Zou, Zhi-Cong Dai, Guang-Qian Ren, Qi Chen, Bin Zhu and Dao-Lin Du. Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils [J]. J Plant Ecol, 2019, 12(5): 846-856.
[6] Wagner A. Chiba de Castro, Rafael O. Xavier, Federico H. L. Garrido, Jair H. C. Romero, Cleto K. Peres and Ruberval C. da Luz. Fraying around the edges: negative effects of the invasive Tradescantia zebrina Hort. ex Bosse (Commelinaceae) on tree regeneration in the Atlantic Forest under different competitive and environmental conditions [J]. J Plant Ecol, 2019, 12(4): 713-721.
[7] Zhichun Lan, Yasong Chen, Lei Li, Feng Li, Binsong Jin and Jiakuan Chen. Testing mechanisms underlying elevational patterns of lakeshore plant community assembly in Poyang Lake, China [J]. J Plant Ecol, 2019, 12(3): 438-447.
[8] Robert J. Warren II, Matt Candeias, Adam Labatore, Michael Olejniczak and Lin Yang. Multiple mechanisms in woodland plant species invasion [J]. J Plant Ecol, 2019, 12(2): 201-209.
[9] Lina Weiss, Linda Schalow, Florian Jeltsch and Katja Geissler. Experimental evidence for root competition effects on community evenness in one of two phytometer species [J]. J Plant Ecol, 2019, 12(2): 281-291.
[10] Camilla Ruø Rasmussen, Anne Nygaard Weisbach, Kristian Thorup-Kristensen and Jacob Weiner. Size-asymmetric root competition in deep, nutrient-poor soil [J]. J Plant Ecol, 2019, 12(1): 78-88.
[11] Rebekka B?gelein, Cecilia A. Pérez, Philipp Sch?fer and Frank M. Thomas. How competitive is the ‘pioneerclimax’ tree species Nothofagus alpina in pristine temperate forests#br# of Chile? [J]. J Plant Ecol, 2019, 12(1): 144-156.
[12] Raquel Carolina Miatto and Marco Antonio Batalha.
Are the cerrado and the seasonal forest woody floras assembled by different processes despite their spatial proximity?
[J]. J Plant Ecol, 2018, 11(5): 740-750.
[13] Benjamin D. Jaffe, Michael E. Ketterer, Stephen M. Shuster. Elemental allelopathy by an arsenic hyperaccumulating fern, Pteris vittata L. [J]. J Plant Ecol, 2018, 11(4): 553-559.
[14] Jaime Madrigal-González, Rodrigo S. Rios, Cristina F. Aragón, Ernesto Gianoli. Indirect facilitation by a liana might explain the dominance of a small tree in a temperate forest [J]. J Plant Ecol, 2018, 11(4): 604-612.
[15] Vasile Alexandru Suchar, Ronald Robberecht. Integration and scaling of UV-B radiation effects on plants: the relative sensitivity of growth forms and interspecies interactions [J]. J Plant Ecol, 2018, 11(4): 656-670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!