J Plant Ecol ›› 2015, Vol. 8 ›› Issue (1): 41-50.doi: 10.1093/jpe/rtu007

• Research Articles • Previous Articles     Next Articles

The ecological performance of metallophyte plants thriving in geochemical islands is explained by the Inclusive Niche Hypothesis

Helena C. Serrano1,2, Cristina Antunes1, Manuel J. Pinto2, Cristina Máguas1, Maria Amélia Martins-Loução1,2,* and Cristina Branquinho1   

  1. 1 Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; 2 Jardim Botânico do Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, R. Escola Politécnica 58, 1250-102 Lisboa, Portugal
  • Received:2014-01-22 Accepted:2014-05-18 Online:2014-06-30 Published:2015-01-22
  • Contact: Martins-Lou??o, Maria Amélia E-mail:maloucao@fc.ul.pt

Abstract: Aims The Inclusive Niche Hypothesis has not been validated for plants using ecophysiological performance. The few experiments have measured growth and competition but not the physiological response of plants. A metallophyte plant that hyperaccumulates aluminium (Al), Plantago almogravensis, showed a defined spatial distribution by occurring mostly on vegetation gaps associated with metalliferous areas (geochemical islands). This case was used to determine, in situ, whether the Inclusive Niche Hypothesis was suitable to explain the extent of the species realized niche.
Methods The vegetation associated with P. almogravensis geochemical islands in the SW coast of Portugal was mapped. The biotic (neighbouring plants) and abiotic (edaphic) components of the niche were correlated with parameters of the plant's ecological and physiological performances (plant density and cover; leaf C and N concentration and isotopic composition; growth). The results were obtained using image analysis, abundance and morphological measures, isotopic signatures and chemical composition.
Important findings The species showed better physiological performance where its ecological performance was lower due to trade-offs with environmental constraints. The species' realized niche was mostly limited by shrub competition and soil Al-toxicity. These limits contribute to explain the rarity status of the species: the species has a poor capacity to compete but, due to an enhanced Al-tolerance and Al-hyperaccumulator trait, has the ability to find refuge in geochemical islands that are too harsh for most other species. This work, based on ecophysiological field studies, provides support for the Inclusive Niche Hypothesis relating to plant species.

Key words: competition, ecophysiology, edaphic endemism, hyperaccumulation, stable isotopes, trade-off

摘要:
Aims The Inclusive Niche Hypothesis has not been validated for plants using ecophysiological performance. The few experiments have measured growth and competition but not the physiological response of plants. A metallophyte plant that hyperaccumulates aluminium (Al), Plantago almogravensis, showed a defined spatial distribution by occurring mostly on vegetation gaps associated with metalliferous areas (geochemical islands). This case was used to determine, in situ, whether the Inclusive Niche Hypothesis was suitable to explain the extent of the species realized niche.
Methods The vegetation associated with P. almogravensis geochemical islands in the SW coast of Portugal was mapped. The biotic (neighbouring plants) and abiotic (edaphic) components of the niche were correlated with parameters of the plant's ecological and physiological performances (plant density and cover; leaf C and N concentration and isotopic composition; growth). The results were obtained using image analysis, abundance and morphological measures, isotopic signatures and chemical composition.
Important findings The species showed better physiological performance where its ecological performance was lower due to trade-offs with environmental constraints. The species' realized niche was mostly limited by shrub competition and soil Al-toxicity. These limits contribute to explain the rarity status of the species: the species has a poor capacity to compete but, due to an enhanced Al-tolerance and Al-hyperaccumulator trait, has the ability to find refuge in geochemical islands that are too harsh for most other species. This work, based on ecophysiological field studies, provides support for the Inclusive Niche Hypothesis relating to plant species.

[1] Wei Xue, Lin Huang and Fei-Hai Yu. Importance of starting points in heterogeneous environments: interactions between two clonal plants with contrasting spatial architectures [J]. J Plant Ecol, 2020, 13(3): 323-330.
[2] Susanna Vain, Iris Gielen, Jaan Liira, and Kristjan Zobel. Population-level performance of Arabidopsis thaliana (L.) Heynh in dense monocultures [J]. J Plant Ecol, 2020, 13(2): 241-246.
[3] Yong Zhou, Xia Li, Hui Liu, Yubao Gao, Wade J. Mace, Stuart D. Card and Anzhi Ren. Effects of endophyte infection on the competitive ability of Achnatherum sibiricum depend on endophyte species and nitrogen availability [J]. J Plant Ecol, 2019, 12(5): 815-824.
[4] Ling-Yun Wan, Shan-Shan Qi, Chris B. Zou, Zhi-Cong Dai, Guang-Qian Ren, Qi Chen, Bin Zhu and Dao-Lin Du. Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils [J]. J Plant Ecol, 2019, 12(5): 846-856.
[5] Robert L. Fitch, Erin J. Questad and Edward G. Bobich. Soil resource availability and its effect on the ecophysiology and establishment of Stipa pulchra [J]. J Plant Ecol, 2019, 12(4): 603-614.
[6] Wagner A. Chiba de Castro, Rafael O. Xavier, Federico H. L. Garrido, Jair H. C. Romero, Cleto K. Peres and Ruberval C. da Luz. Fraying around the edges: negative effects of the invasive Tradescantia zebrina Hort. ex Bosse (Commelinaceae) on tree regeneration in the Atlantic Forest under different competitive and environmental conditions [J]. J Plant Ecol, 2019, 12(4): 713-721.
[7] Zhichun Lan, Yasong Chen, Lei Li, Feng Li, Binsong Jin and Jiakuan Chen. Testing mechanisms underlying elevational patterns of lakeshore plant community assembly in Poyang Lake, China [J]. J Plant Ecol, 2019, 12(3): 438-447.
[8] Zhengchao Yu, Qilei Zhang, Xiaoting Zheng, Xuandong Huang and Changlian Peng. Anthocyanin accumulation in juvenile Schima superba leaves is a growth trade-off by consuming energy for adaptation to high light during summer [J]. J Plant Ecol, 2019, 12(3): 507-518.
[9] Robert J. Warren II, Matt Candeias, Adam Labatore, Michael Olejniczak and Lin Yang. Multiple mechanisms in woodland plant species invasion [J]. J Plant Ecol, 2019, 12(2): 201-209.
[10] Lina Weiss, Linda Schalow, Florian Jeltsch and Katja Geissler. Experimental evidence for root competition effects on community evenness in one of two phytometer species [J]. J Plant Ecol, 2019, 12(2): 281-291.
[11] Camilla Ruø Rasmussen, Anne Nygaard Weisbach, Kristian Thorup-Kristensen and Jacob Weiner. Size-asymmetric root competition in deep, nutrient-poor soil [J]. J Plant Ecol, 2019, 12(1): 78-88.
[12] Rebekka B?gelein, Cecilia A. Pérez, Philipp Sch?fer and Frank M. Thomas. How competitive is the ‘pioneerclimax’ tree species Nothofagus alpina in pristine temperate forests#br# of Chile? [J]. J Plant Ecol, 2019, 12(1): 144-156.
[13] Raquel Carolina Miatto and Marco Antonio Batalha.
Are the cerrado and the seasonal forest woody floras assembled by different processes despite their spatial proximity?
[J]. J Plant Ecol, 2018, 11(5): 740-750.
[14] Joseph K. Brown, Julie C. Zinnert, Donald R. Young. Emergent interactions influence functional traits and success of dune building ecosystem engineers [J]. J Plant Ecol, 2018, 11(4): 524-532.
[15] Benjamin D. Jaffe, Michael E. Ketterer, Stephen M. Shuster. Elemental allelopathy by an arsenic hyperaccumulating fern, Pteris vittata L. [J]. J Plant Ecol, 2018, 11(4): 553-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!