Julia Dieskau, Isabell Hensen, Nico Eisenhauer, Susanne Lachmuth, Harald Auge
2025, 18 (3): rtaf021.
Interspecific plant-soil feedback (PSF)—the influence of soil conditioned by one plant species on another—are key to ecosystem processes but remain challenging to predict due to complex factors like species origin and phylogenetic relatedness. These aspects are underexplored, limiting our understanding of the mechanisms driving PSFs and their broader implications for ecosystem functioning and species coexistence. To shed light on the role of plant species origin and phylogenetic distance in interspecific PSFs, we conducted a greenhouse experiment with 10 native responding species and soils conditioned by 10 native and 10 exotic species resulting in 20 species pairs. These pairs represented a range of phylogenetic distances between both species, spanning up to 270 million years of evolutionary history since their last common ancestor. Conditioning by both native and exotic species reduced biomass production, with stronger inhibition observed for native-conditioned soils. Native-conditioned soils also exhibited lower phosphorus levels, higher basal and specific respiration, and greater cation exchange capacity, base saturation, and magnesium content compared to exotic-conditioned soils. Contrary to expectations, phylogenetic distance did not influence PSFs, regardless of conditioning species origin. Our findings suggest that co-evolution drives native plants to foster microbial communities with low carbon-use efficiency, highlighting soil biota’s critical role in PSFs. This advances our understanding of interactions between plant species origin and microbial communities and underlines the importance of microbial management for promoting native species and controlling invasives. The lack of phylogenetic distance effects aligns with prior studies, indicating evolutionary relatedness alone does not reliably predict PSF outcomes.
Yixiao Tao, Xiaofeng Fu, Xia Xu, Qinghong Geng, Chonghua Xu, Chenghui Ju, Qian Li, Wenfang Liu, Xiaochou Chen
2025, 18 (3): rtaf027.
Fine root dynamics are crucial for terrestrial ecosystem productivity and nutrient cycling. However, the effects of nitrogen (N) deposition on fine root dynamics in temperate ecosystems remain poorly understood. In this study, we used a meta-analysis to explore the general patterns and key drivers of fine root biomass and turnover in temperate forests and grasslands in response to N application. We found that N application significantly reduced fine root biomass compared to the control group (no N application), with notable differences across N forms. However, the impact of N application on fine root biomass remained consistent across ecosystem types, soil depths and root diameters. In terms of fine root turnover rate, N application had no significant overall effect, and the response did not vary across N forms, ecosystem types, soil depths or root diameters. However, significant differences were observed across methods for estimating fine root turnover rate. Multiple regression analysis showed that mean annual temperature (MAT) and experimental factors (including duration and N application rates) were the primary determinants of fine root biomass response to N application. In contrast, fine root turnover was not significantly influenced by any of the factors analyzed. Overall, our findings highlight the negative impact of N application on fine root biomass and the neutral effect on fine root turnover, and also suggest that find root dynamics are closely associated with experimental factors, including experiment duration and N application rate. This study provides an important advancement in understanding the feedback between root dynamics and global change, offering insights for developing management strategies to address belowground ecological processes under global change scenarios.
Junjiong Shao, Xuhui Zhou, Lingyan Zhou, Yan Li
2025, 18 (3): rtaf029.
Ecological theories and field observations indicate a strong allometric relationship between plant biomass and leaf area. Here we aimed to rigorously investigate how this allometry can predict the biomass responses to global warming. We conducted a global synthesis on a dataset of 188 species from warming experiments. The reliability of metabolic scaling theory (MST) and functional equilibrium theory (FET) was tested by estimating an allometric coefficient (β) under a Bayesian framework. The results showed that the high β in areas suffering low precipitation was consistent with both theories, while the high β in areas suffering low-temperature stress was consistent with the MST but not the FET. These differences in β between ambient and stressed environments might be derived from the hydraulic constraints in stressed environments. Using a general allometry across all species explained 58% of the total variance in the warming responses of plant biomass. The predictive power was not largely improved when factors such as plant functional type, mean annual temperature and precipitation, warming magnitude, and other experimental treatments were considered. The predictive error was primarily due to the theoretical assumptions that are based on long-term adaptation failing to capture the changes in specific leaf area (SLA) under rapid global warming. Fortunately, integrating the information on plant traits such as SLA and leaf biomass fraction in the ambient environment effectively improved the predictive power from 58% to 81%, highlighting the necessity of incorporating plant traits into ecosystem models for better predicting the ecosystem carbon cycle in a changing world.
Jiangling Zhu, Chengjun Ji, Heng Zhang, Qinwei Ran, Shengli Tao, Zhiheng Wang, Xiaoting Xu, Qiong Cai, Jingyun Fang
2025, 18 (3): rtae111.
China represents a significant global hotspot for species in the family Fagaceae, which are widely distributed across the country and play a crucial role in various ecological and social systems. Consequently, predicting the future distribution and richness of these species in China holds substantial importance. Nevertheless, a thorough assessment of the responses of China’s Fagaceae to future climate change remains absent. This study presents the first national-scale assessment of the future distribution of over 200 Fagaceae species in China, utilizing ensemble species distribution models (SDMs) for the 2050s and 2070s under various climate change scenarios. The SDM projections indicate notable changes in the distribution of Fagaceae species, characterizing with an overall decline in distribution area, an upward migration in elevation, and a northeastward shift in their range. These changes are expected to significantly alter the spatial pattern of species richness, creating possible refugia in the southwestern mountainous regions and the western Qinling Mountains. We further revealed that a considerable amount of China’s natural reserves will show decreased richness of Fagaceae under climate change. Our study systematically evaluates the impact of future climate change on the distribution of Fagaceae species in China, providing potentially useful guidance for conservation planning of these species in China.