Research Articles

Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico

Expand
  • 1Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2 Laboratorio de Ecosistemática, Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico, 3 Departamento de Botánica, Escola Politécnica Superior de Enxeñaría, Universidad de Santiago de Compostela, Lugo, Spain

    *Corresponding author. E-mail: luna.isolda@gmail.co; isolda_luna-vega@ciencias.unam.mx

Received date: 2020-01-06

  Revised date: 2020-04-14

  Accepted date: 2020-05-05

  Online published: 2020-05-09

Abstract

Aims

We aimed to evaluate how climatic fluctuations influence the plasticity of anatomical vessel traits and the width of annual tree-rings of two relict-endemic Mexican Magnolia species. Notwithstanding, few studies have assessed the drought effect on vessel traits in tropical montane cloud trees of eastern Mexico.

Methods

Through digital images of growth rings, we assessed the tree radial growth rate, age of the trees and plasticity in vessel traits regarding climatic fluctuations of the Mexican Magnoliaspecies studied. We compared vessel density, hydraulic diameter and percentage of conductive area in drought years (DY) and non-drought years (NDY) in two Mexican Magnolia species.

Important Findings

For the first time, the plasticity that occurs in porous wood vessel traits to long-term climatic fluctuations was analysed for two endangered Magnolia species (Magnolia vovidesii and M. schiedeana) from two tropical montane cloud forests in Mexico. We found that temperature and precipitation were strongly associated with differences in tree-ring width when DY and NDY were compared. Our analyses revealed that a high plasticity in vessel anatomy of diffuse-porous wood was related to temperature and/or water availability for both Magnolia species studied. We concluded that anatomical adaptations to DY resulted in a substantial reduction in vessel traits when compared with NDY, and that the plastic adaptations played an essential role in water transport and safety for the survival of the studied species during stressful long periods.

Cite this article

Ernesto Chanes Rodríguez-Ramírez, José Antonio Vázquez-García, Ignacio García-González, Othón Alcántara-Ayala and Isolda Luna-Vega . Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico[J]. Journal of Plant Ecology, 2020 , 13(3) : 331 -340 . DOI: 10.1093/jpe/rtaa019

Options
Outlines

/

752-9921/bottom_en.htm"-->