J Plant Ecol ›› 2020, Vol. 13 ›› Issue (6): 757-764 .DOI: 10.1093/jpe/rtaa063

• Research Articles • Previous Articles     Next Articles

Biochar and alternate partial root-zone irrigation greatly enhance the effectiveness of mulberry in remediating lead-contaminated soils

Lei Wang1,2 , Qing-Lai Dang2, *, and Binyam Tedla2   

  1. 1 Department of Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Jiangsu, China, 2 Department of Forestry, Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada

    *Corresponding author. E-mail: qdang@lakeheadu.ca
  • Received:2020-05-23 Revised:2020-07-19 Accepted:2020-09-14 Online:2020-09-16 Published:2020-12-01

Abstract:

Aims

Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils. This study aims to examine the growth, lead resistance and lead accumulation of mulberry (Morus alba L.) seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation (APRI).

Methods

We conducted a three-factor greenhouse experiment with biochar (with vs. without biochar addition), irrigation method (APRI vs. normal irrigation) and four levels of soil lead (0, 50, 200 and 800 mg·kg−1). The performance of the seedlings under different treatments was evaluated by measuring growth traits, osmotic substances, antioxidant enzymes and lead accumulation and translocation.

Important Findings

The results reveal that mulberry had a strong ability to acclimate to soil lead contamination, and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead. The seedlings were able to resist the severe soil lead contamination (800 mg·kg−1 Pb) by adjusting glutathione metabolism, and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity. Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil. Pb, biochar and ARPI interactively affected Pb concentrations in leaves and roots, translocation factor and bioconcentration. Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.

Key words: Pb-contaminated soil, phytoremediation, Morus alba L, alternate partial root-zone irrigation, biochar

摘要:

土壤铅污染日益严重,植物修复是一种环保的污染土壤修复技术。本文旨在研究四种土壤铅污染水平下,添加生物碳和分根区交替 灌溉(Alternative Partial Root-zone Irrigation,APRI)对桑树幼苗的生长、铅适应性和铅积累的影响。我们以生物碳(添加与不添加生物碳)、灌溉方式(APRI 与常规灌溉)和土壤铅水平(0、50、200 和800 mg kg−1 Pb)为三因素实施了温室试验。通过测定桑树幼苗的生长性状、渗透物质代谢、抗氧化酶活性、铅的积累和转运等参数,探讨了不同处理对桑树生长发育的影响。结果表明,桑树对土壤铅污染有较强的适应能力;生物碳和APRI 在不同土壤铅水平上协同提高了生物量和吸收根表面积。桑树通过调节谷胱甘肽 (GSH)、脯氨酸代谢和过氧化物酶(POD)活性,增加了渗透和抗氧化调节能力,进而提高了对重度铅污染土壤(800 mg kg−1)的抗性。桑苗中的铅离子主要集中在根中,与土壤铅浓度具有剂量效应。土壤铅、生物碳和ARPI的交互作用影响了叶片和根系中铅的浓度、转运和生物富集系数。综上所述,在桑树栽培中结合外源生物碳和APRI可有效地用于修复土壤铅污染。

关键词: 土壤铅污染, 植物修复技术, 桑树, 分根区交替灌溉, 生物碳