Journal of Plant Ecology

• • 上一篇    下一篇

全球尺度上不同纬度与森林类群的干旱恢复力格局及其驱动因素

  

  • 收稿日期:2025-08-30 接受日期:2025-12-08

Global patterns and drivers of drought resilience across latitudes and forest taxa

Ye Zhang1,#, Yixue Hong1,#, Xibin Sun1, Weina Jia1,*, Hao Chen1,*   

  1. 1State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China

    #These authors contributed equally to this work.

    *Corresponding authors: 

    Hao Chen

    No.66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, China

    Email: chenhao27@mail.sysu.edu.cn Tel: +86 -020-39330186; Fax: +86 -020-39330186

    Weina Jia No.66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, China

    Email: jia_weina@163.com Tel: +86 -020-39330186; Fax: +86 -020-39330186

  • Received:2025-08-30 Accepted:2025-12-08
  • Supported by:
    This work was supported by Guangdong Basic and Applied Basic Research Foundation (2025A1515011004) and National Natural Science Foundation of China (32501472).

摘要: 极端干旱事件预计将日益频繁且强度不断增强,对森林生态系统的稳定性构成重大威胁。森林干旱恢复力作为衡量生态系统稳定性及其在气候变化背景下碳汇潜力的关键指标,其空间分布特征及在不同植物功能类型间的差异仍缺乏系统性认识。本研究整合了282 条树轮年表数据、卫星环境数据和生物因子信息,利用广义线性模型,系统评估了森林干旱恢复力在不同纬度梯度、植物功能类型(被子与裸子植物)以及分类阶元上的全球格局及其潜在驱动机制。结果表明,高纬度森林的干旱恢复力显著低于中、低纬度森林。这主要源于水分可利用性受限与低温条件的共同限制。与裸子植物占优势的森林相比,被子植物占优势的森林表现出更高的干旱恢复力;其中被子植物森林的干旱韧性主要受养分条件与热量因子驱动,而裸子植物森林则更多受水分条件和物种多样性的制约。同时,不同分类阶元的森林在干旱恢复力上也存在明显差异。值得注意的是,被子植物中的栎属(Quercus)表现出较高的干旱恢复力,而部分裸子植物属(如铁杉属Tsuga和刺柏属Juniperus)也通过不同的生理与形态适应机制展现出较强的耐旱能力。这些发现揭示了森林干旱韧性是气候约束与生物性状共同作用的结果,并呈现出清晰的纬度与系统发育差异。识别这些规律有助于制定区域针对性的森林管理与保护策略,以提升在气候变化不断加剧背景下生态系统的稳定性。

关键词: 森林生态系统, 生态系统稳定性, 干旱恢复力, 纬度格局, 植被功能类型, 分类阶元

Abstract: Extreme drought events are projected to increase in frequency and severity, posing serious threats to the stability of forest ecosystems. Forest drought resilience—an essential indicator of ecosystem stability and carbon sequestration potential under climate change—remains poorly understood in terms of its spatial distribution and variation across plant functional types. Here, we assessed global patterns and underlying drivers of forest drought resilience across latitudinal gradients, plant functional types (angiosperms vs. gymnosperms), and taxonomic ranks, using generalized linear models that integrate 282 tree-ring chronologies with satellite environmental and biotic data. Results showed that high-latitude forests had significantly lower drought resilience than those in mid- and low-latitude regions, primarily due to the combined constraints of limited water availability and low temperature. Angiosperm-dominated forests exhibited higher drought resilience than gymnosperm-dominated forests, with the former mainly driven by nutrients and heat but the latter more constrained by water availability and species diversity. Forest drought resilience also differed among specific taxonomic ranks. Notably, the angiosperm genus Quercus exhibited high drought resilience, while some gymnosperm genera—such as Tsuga and Juniperus—also demonstrated strong drought tolerance through distinct physiological and morphological adaptations. These findings reveal that forest drought resilience is jointly shaped by climatic constraints and biotic traits, with clear latitudinal and phylogenetic differences. Recognizing these patterns can inform region-specific forest management and conservation strategies aimed at enhancing ecosystem stability under intensifying climate change.

Key words: Forest ecosystems, ecosystem stability, drought resilience, latitudinal pattern, plant functional type, taxonomic ranks