Journal of Plant Ecology

• •    

气候与土地利用/覆盖变化协同驱动中国土壤呼吸动态:基于分植被类型机器学习的研究

  

  • 收稿日期:2025-03-23 接受日期:2025-09-04

Climate-LUCC Synergy Drives Soil Respiration Dynamics in China: A Biome-Specific Machine Learning Approach

Ru Ming1,2, Yan Zhou3, Yaoping Cui3, Ni Huang4, Junbang Wang1*   

  1. 1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 

    2University of Chinese Academy of Science, Beijing 100049, China 

    3College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou 450046, China 

    4State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 


    *Correspondence: Junbang Wang

    Email: jbwang@igsnrr.ac.cn

    Tel & Fax: + 010 64874229

  • Received:2025-03-23 Accepted:2025-09-04
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2024YFF1308105), the Chief Scientist Program of Qinghai Province (2024-SF102), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (No.2019QZKK0302-02), and the National Natural Science Foundation of China (No.31971507).

摘要: 土壤呼吸(Soil respiration, RS)通过自养和异养呼吸释放CO₂,是陆地生态系统中仅次于光合作用的第二大碳通量,在全球碳循环和气候反馈中扮演关键角色。中国气候经历了2001–2010年间变暖暂缓至2010–2019年间变暖加速的转变,叠加持续的土地利用/覆盖变化(Land use/cover change, LUCC),共同驱动土壤呼吸时空动态,但二者贡献大小与影响机制尚不明确。本研究区分植被类型构建的机器学习模型,能够解释观测时空变化的68.6%~82.3%,进而估算了1km空间分辨率2001–2019年中国植被区域土壤呼吸。结果表明,中国植被区域年土壤呼吸总量多年平均为4.24 ± 0.02 Pg C year⁻¹,其年际变化由2001–2010年间的相对稳定(-5.58 Tg C year⁻¹; -0.08 g C m⁻² year⁻¹, P = 0.77)转变为2010–2019年间的显著上升(36.29 Tg C year⁻¹; 0.52 g C m⁻² year⁻¹, P < 0.05)。气候因子与LUCC共同解释了土壤呼吸年际变率的61.7%,其中水分条件是主要驱动因子,单独贡献了29.6%的变异。大规模的生态恢复工程在增强陆地碳汇的同时,也促进了土壤呼吸,这可能部分抵消生态恢复工程的碳固持量。本研究所获得的长时序数据集在支撑土壤呼吸影响机制研究的同时,也为陆地生态系统碳循环模型改进提供可参考的基准数据。本文研究结果凸显了土壤呼吸在中国碳收支评估中的关键地位及其对气候与人为扰动的敏感性,在制定可持续的生态系统管理政策中需对此给予重点关注。

关键词: 气候变化, 碳循环, 机器学习, 土地利用/覆盖变化(LUCC), 生态恢复工程

Abstract: Soil respiration (RS) releases CO₂ through autotrophic and heterotrophic respiration, representing the second largest carbon flux in terrestrial ecosystems after photosynthesis. It plays a pivotal role in global carbon cycling and climate feedback. China’s climate shifted from a warming hiatus (2001–2010) to accelerated warming (2010–2019), coupled with ongoing land use/cover change (LUCC), jointly drives the spatiotemporal dynamics of RS. However, the relative contributions and underlying mechanisms of these factors remain underexplored. In this study, biome-specific machine learning models (R² = 0.69–0.82) were developed to estimate RS at a 1 km spatial resolution across China from 2001 to 2019. Results indicate that the long-term average annual RS across China’s vegetated areas is 4.24 ± 0.02 Pg C year⁻¹. Interannual variability shifted from relative stability during 2001–2010 (-5.58 Tg C year⁻¹; -0.08 g C m⁻² year⁻¹, P = 0.77) to a significant increase (36.29 Tg C year⁻¹; 0.52 g C m⁻² year⁻¹, P < 0.05) during 2010–2019. Climate and LUCC together explained 61.7% of the interannual variability in RS, with moisture as the primary driver (29.6% of variance). Large-scale ecological engineering projects, while effective in enhancing carbon sequestration, also promote RS, potentially offsetting some carbon storage gains. The long-term time-series dataset obtained in this study not only supports research on the mechanisms influencing RS but also provides benchmark data for improving terrestrial ecosystem carbon cycle models. These findings highlight RS’ critical role in China’s carbon budget and its sensitivity to climatic and anthropogenic drivers.

Key words: climate trends, carbon cycle, machine learning, LUCC, ecological restoration