Journal of Plant Ecology ›› 2026, Vol. 19 ›› Issue (1): 1-0.DOI: 10.1093/jpe/rtaf141

• •    

氮与生物炭相互作用促进了土壤呼吸温度敏感性的稳定

  

  • 收稿日期:2025-03-27 接受日期:2025-08-22 出版日期:2026-02-01 发布日期:2026-02-05

Nitrogen and biochar interactions promote the stabilization of the temperature sensitivity of soil respiration

Chen Hu1,2, Jinyu Gong1, Zhiyuan Ma1, Linxuan He1, Jingpin Lei1,* and Hongxia Cui2,3,*   

  1. 1Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Forest Silviculture of the State Forestry and Grassland Administration, Beijing 100091, China, 2Hubei Academy of Forestry, Wuhan 430000, China, 3Hubei Shennongjia Forestry Ecosystem Research Station, Shennongjia 442421, China

    *Corresponding authors. E-mail: leijp@caf.ac.cn(J.L.); chxlky@163.com(H.C.)

  • Received:2025-03-27 Accepted:2025-08-22 Online:2026-02-01 Published:2026-02-05
  • Supported by:
    This research was supported by the National Key R&D Program of China (2023YFD2200405) and the Science and Technology Research Project of Hubei Academy of Forestry (2021YGG05). 

摘要: 全球氮沉降和气候变暖共同威胁人工林土壤有机碳(SOC)的稳定性。土壤呼吸(Rs)作为SOC分解的主要途径,其调控机制尚不清楚。生物炭能够改良土壤养分和调节微生物群落,可潜在缓解氮沉降的负面影响。然而,氮-生物炭互作如何通过微生物群落结构、酶活性及碳氮磷循环过程影响Rs及其温度敏感性(Q10),仍缺乏系统认识。本研究以日本落叶松(Larix kaempferi)人工林为研究对象,通过为期5年的模拟氮沉降和生物炭添加控制实验,试图揭示氮-生物炭互作对Rs及其Q10的影响途径。结果表明:1) 低添加(LN: 50 kg N ha−1 a−1)提高Rs(+7%),高氮添加(HN: 100 kg N ha−1 a−1)则抑制Rs(−32%);低生物炭(C5: 5 t ha−1)和高生物炭(C10: 10 t ha−1)均提高Rs(+8%和+13%);氮和生物炭交互处理对Rs表现为抑制作用,下降比例为12%−20%。2) LN、C5、C10处理均提高Q10,而HN则降低Q10。此外,氮和生物炭的交互处理有利于维持Q10的稳定。3) 氮和生物炭添加通过多种路径影响土壤碳动态:氮添加通过提升AP、NO3-N含量直接或间接抑制微生物生物量及团聚体稳定性,而生物炭对SOC的潜在促进作用随时间推移逐渐减弱,氮和生物炭交互处理通过化学-微生物互作网络影响Rs。本研究阐明了氮和生物炭添加处理下土壤微生物-理化过程-呼吸的级联响应机制,为气候变暖背景下的土壤碳排放管理提供理论支撑。

关键词: 土壤呼吸, 温度敏感性, 微生物群落, 亚热带人工林, 生物炭改良

Abstract: Atmospheric nitrogen (N) deposition and climate warming threaten plantation soil organic carbon (SOC) stability. Soil respiration (Rs), the primary pathway for SOC decomposition, remains poorly understood in terms of regulatory mechanisms. Biochar may mitigate N deposition impacts. However, the mechanisms by which the interactive effects of N and biochar influence Rs through soil microbial community structure, enzyme activity and C–N–P cycling processes, as well as the temperature sensitivity (Q10) of Rs under these interactions, remain unclear. This study investigated these issues through a five-year controlled experiment simulating N deposition and biochar addition in a Larix kaempferi plantation, integrating changes in soil C-cycle-related properties and their interactions. The results revealed that low N addition (LN: 50 kg N ha−1 a−1) increased Rs by 7%, while high-N addition (HN: 100 kg N ha−1 a−1) reduced it by 32%. Low and high biochar treatments (C5: 5 t ha−1; C10: 10 t ha−1) increased Rs by 8% and 13%, respectively. N and biochar interactions consistently suppressed Rs, reducing it by 12%−20%. LN, C5 and C10 enhanced Q10, whereas HN decreased it. Additionally, N and biochar interactions stabilized Q10. N addition directly or indirectly inhibited microbial biomass and aggregate stability by elevating available phosphorus and NO3--N content, while biochar’s potential to promote SOC was constrained by its diminishing effects over time. Both factors collectively influenced Rs through a chemical–microbial interaction network. This study elucidates the cascading mechanisms linking soil microbial-physicochemical-Rs under N and biochar additions, providing insights for managing soil C emissions under rising temperatures.

Key words: soil respiration, temperature sensitivity, microbial community, subtropical plantation, biochar amendment