Journal of Plant Ecology ›› 2024, Vol. 17 ›› Issue (6): 0-rtae051.DOI: 10.1093/jpe/rtae051

• •    下一篇

陆生植物系统共生现象的普遍性及其潜在机制

  

  • 收稿日期:2023-10-09 接受日期:2024-05-29 出版日期:2024-12-01 发布日期:2024-06-14

Prevalence and underlying mechanisms of phylosymbiosis in land plants

Li-Qun Lin1, Luke R. Tembrock2 and Li Wang1,3,*   

  1. 1 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
    2 Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
    3 Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528225, China

    *Corresponding author. E-mail: wangli03@caas.cn

  • Received:2023-10-09 Accepted:2024-05-29 Online:2024-12-01 Published:2024-06-14
  • Supported by:
    We would like to acknowledge Dr. Ko-Hsuan Chen and two anonymous referees whose comments greatly improved the quality of this manuscript. Confict of interest statement. The authors declare that they have no confict of interest.

摘要: 系统共生是指微生物群落组成与宿主系统发育一致的一种现象,是研究植物-微生物关系及其进化生态学的有利框架。本文综述了植物界中系统共生现象的普遍性,基于以往研究阐明了促成其发生的基本生态和进化过程,并探讨了识别系统共生的常用方法。研究发现,系统共生现象的存在可能受宿主植物的系统发育距离和分类水平的影响,随着分类尺度的精细化,关联强度可能减弱。值得注意的是,内生微生物群落比附生或根际相关微生物群落表现出更强的系统共生信号。不同类型的微生物(如真菌和细菌)由于在定殖、传播或功能特性上的差异,可能产生高度可变的系统共生证据。本文还概述了4种基本群落组装过程(扩散、选择、多样化、漂变)如何促进宿主-微生物系统共生现象的建立与维持。此外,本文强调了检测系统共生现象所采用方法的多样性,共涉及3个关键过程:构建宿主系统发育树、评估微生物数据以及统计评估宿主系统发育与微生物组成之间的相关性。不同研究中使用显著不同的方法使得结果之间的比较变得具有挑战性。为了推进我们的理解,未来的研究有望探索更低分类水平上的系统共生现象,并研究在同一宿主内共存的不同微生物群落的协同作用。理解不同群落组装过程在驱动系统共生现象中的相对重要性,将对深入理解宿主-微生物相互作用的生态和进化具有重要意义。

关键词: 系统共生现象, 植物-微生物, 进化生态学, 微生物群落

Abstract: Phylosymbiosis, the congruence of microbiome composition with host phylogeny, is a valuable framework for investigating plant–microbe associations and their evolutionary ecology. This review assesses the prevalence of phylosymbiosis across the plant kingdom, elucidates the fundamental ecological and evolutionary processes contributing to its occurrence based on previous research and explores commonly used methods for identifying phylosymbiosis. We find that the presence of phylosymbiosis may be influenced by both phylogenetic distance and the taxonomic level at which host plants are examined, with the strength of associations potentially decreasing as the taxonomic scale becomes finer. Notably, the endophytic microbiome exhibits a stronger phylosymbiosis signal compared with the epiphytic or rhizosphere-associated microbiomes. Microorganisms such as fungi and bacteria can yield highly variable evidence for phylosymbiosis due to differences in colonization, transmission or functional characteristics. We also outline how the four community assembly processes (dispersal, selection, diversification and drift) contribute to the establishment and maintenance of host–microbe phylosymbiosis. Furthermore, we highlight the diversity of methods employed to detect phylosymbiosis, which involves three key processes: constructing host phylogenies, assessing microbial data and statistically evaluating the correlation between host phylogeny and microbial composition. Remarkably different methodologies across studies make comparisons between findings challenging. To advance our understanding, future research is expected to explore phylosymbiosis at lower taxonomic levels and investigate different microbial communities coexisting synergistically within the same host. Understanding the relative importance of community assembly processes in driving phylosymbiosis will be critical for gaining deeper insights into the ecology and evolution of host–microbe interactions.

Key words: phylosymbiosis, plant-microbe, evolutionary ecology, microbial community