Current Issue
  • Volume 8 Issue 6
    Naturally disturbance-prone coppice on the eastern coast of Eleuthera, The Bahamas and two coppice shrub species capable of rapid post-disturbance vegetative growth and reproduction: Erithalis fruiticosa (left, flowering ~1 year after severe disturbance) and Lantana involucrata (right, ~5 months after disturbance). Photos taken by G. Fleming.
      
    Research Articles
    Xian Wu, Xiangping Wang, Yulian Wu, Xinli Xia, Jingyun Fang
    2015, 8 (6): 559-567 .
    Abstract ( 202 )   PDF   Save
    Aims Forest height is a major factor shaping geographic biomass patterns, and there is a growing dependence on forest height derived from satellite light detecting and ranging (LiDAR) to monitor large-scale biomass patterns. However, how the relationship between forest biomass and height is modulated by climate and biotic factors has seldom been quantified at broad scales and across various forest biomes, which may be crucial for improving broad-scale biomass estimations based on satellite LiDAR.
    Methods We used 1263 plots, from boreal to tropical forest biomes across China, to examine the effects of climatic (energy and water availability) and biotic factors (forest biome, leaf form and leaf phenology) on biomass–height relationship, and to develop the models to estimate biomass from forest height in China.
    Important findings (i) Forest height alone explained 62% of variation in forest biomass across China and was far more powerful than climate and other biotic factors. (ii) However, the relationship between biomass and forest height were significantly affected by climate, forest biome, leaf phenology (evergreen vs. deciduous) and leaf form (needleleaf vs. broadleaf). Among which, the effect of climate was stronger than other factors. The intercept of biomass–height relationship was more affected by precipitation while the slope more affected by energy availability. (iii) When the effects of climate and biotic factors were considered in the models, geographic biomass patterns could be well predicted from forest height with an r 2 between 0.63 and 0.78 (for each forest biome and for all biomes together). For most biomes, forest biomass could be well predicted with simple models including only forest height and climate. (iv) We provided the first broad-scale models to estimate biomass from forest height across China, which can be utilized by future LiDAR studies. (v) Our results suggest that the effect of climate and biotic factors should be carefully considered in models estimating broad-scale forest biomass patterns with satellite LiDAR.
    Junmeng Lu, Daniel J. Johnson, Xiujuan Qiao, Zhijun Lu, Qinggang Wang, Mingxi Jiang
    2015, 8 (6): 568-577 .
    Abstract ( 159 )   PDF   Save
    Aims Seedlings are vulnerable to many kinds of fatal abiotic and biotic agents, and examining the causes of seedling dynamics can help understand mechanisms of species coexistence. To disentangle the relative importance of neighborhood densities, habitat factors and phylogenetic relatedness on focal seedling survival, we monitored the survival of 5306 seedlings of 104 species>15 months. We address the following questions: (i) How do neighborhood densities, habitat variables and phylogenetic relatedness affect seedling survival? What is the relative importance of conspecific densities, habitat variables and phylogenetic relatedness to seedling survival? (ii) Does the importance of the neighborhood densities, habitat variables and phylogenetic relatedness vary among growth forms, leaf habits or dispersal modes? Specially, does the conspecific negative density dependence inhibit tree and deciduous seedlings more compared with shrub and evergreen species? Does density dependence affect the wind and animal-dispersed species equally?
    Methods We established 135 census stations to monitor seedling dynamics in a 25-ha subtropical forest plot in central China. Conspecific and heterospecific seedling density in the 1-m 2 seedling plot and adult basal area within a 20-m radius provided neighborhood density variables. Mean elevation, convexity and aspect of every 5- × 5-m grid with seedling plots were used to quantify habitat characteristics. We calculated the relative average phylodiversity between focal seedling and heterospecific neighbors to quantify the species relatedness in the neighborhood. Eight candidate generalized linear mixed models with binominal error distribution were used to compare the relative importance of these variables to seedling survival. Akaike's information criteria were used to identify the most parsimonious models.
    Important findings At the community level, both the neighborhood densities and phylogenetic relatedness were important to seedling survival. We found negative effects of increasing conspecific seedlings, which suggested the existence of species-specific density-dependent mortality. Phylodiversity of heterospecific neighbors was negatively related to survival of focal seedlings, indicating similar habitat preference shared among phylogenetically closely related species may drive seedling survival. The relative importance of neighborhood densities, habitat variables and phylogenetic relatedness varied among ecological guilds. Conspecific densities had significant negative effect for deciduous and wind-dispersed species, and marginally significant for tree seedlings>10cm tall and animal-dispersed species. Habitat variables had limited effects on seedling survival, and only elevation was related to the survival of evergreen species in the best-fit model. We conclude that both negative density-dependent mortality and habitat preference reflected by the phylogenetic relatedness shape the species coexistence at seedling stage in this forest.
    Genie M. Fleming, Joseph M. Wunderle Jr, David N. Ewert, Joseph J. O'Brien, Eileen H. Helmer
    2015, 8 (6): 578-592 .
    Abstract ( 125 )   PDF   Save
    Aims The fruits of Erithalis fruticosa L. and Lantana involucrata L. are important in the diet of US federally endangered Kirtland's Warblers (Setophaga kirtlandii) wintering in the Bahamas archipelago. These two shrubs occur in tropical and subtropical dry forests, including forests that have been subjected to recent disturbance. Despite their importance to the endangered warbler, the disturbance ecology of these shrubs is poorly understood. We sought to determine, based on functional characteristics of the plants, whether their presence is favored by a particular type or regime of disturbance.
    Methods We used data from field experiments (seed broadcasting and shrub cutting) conducted on the island of Eleuthera, The Bahamas to determine mechanisms of and conditions favoring establishment and persistence ('vital attributes') of E. fruticosa and L. involucrata, which enabled categorization according to the plant functional types defined by Noble and Slatyer (1980). We then compared hypothesized distributions of these plant functional types among different anthropogenic disturbance regimes to observed distributions of E. fruticosa and L. involucrata in order to identify disturbance regimes most likely to produce habitat used by Kirtland's Warblers.
    Important findings E. fruticosa and L. involucrata were functionally categorized as widely dispersed but largely shade intolerant species capable of establishing or regenerating individuals after disturbance via both seeds and vegetative mechanisms. Both hypothesized and observed distribution patterns indicated the shrubs were favored by a regime of frequent disturbance producing open canopy and ground layers. Among the anthropogenic disturbances we examined, areas of large-scale land clearing combined with subsequent goat grazing most often supported E. fruticosa and L. involucrata, while the shrubs were relatively rare in burned areas. Utilizing the plant functional type framework in combination with field data to evaluate predictions of species occurrence among different disturbances regimes provides a strong theoretical basis for conservation strategies. Understanding which disturbance types favor a habitat of concern and the mechanisms by which they do so can aid the prioritization of areas for protection or the design of habitat management protocols.
    Blake M. Engelhardt, Jeanne C. Chambers, Peter J. Weisberg
    2015, 8 (6): 593-604 .
    Abstract ( 126 )   PDF   Save
    Aims Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics for predicting riparian plant community types and plant species abundances in four small mountain watersheds in central Nevada, USA.
    Methods We mapped riparian vegetation types and identified process zones (based on dominant geomorphic process and valley fill material) within the watersheds. We sampled sites in each combination of vegetation type and process zone (n = 184 sites) and collected data on watershed scale factors, valley and stream geomorphic characteristics and on plant cover of each geomorphic surface. Plant community types were defined by cluster and indicator species analyses of plant cover data, and related to geomorphic variables using ordination analysis (nonmetric multidimensional scaling). Linear mixed effects models were used to predict abundances of indicator species.
    Important findings Variables describing position in the watershed (elevation, contributing area) that are related to gradients of temperature, moisture and stream discharge were of primary importance in predicting plant community types. Variables describing local geomorphic setting (valley width, stream gradient, channel sediments, geomorphic surface height) were of secondary importance, but accurately described the geomorphic setting of indicator species. The process zone classification did not include position in the watershed or channel characteristics and only predicted plant community types with unique geomorphic settings. In small mountain watersheds, predicting riparian vegetation distribution requires explicit consideration of scale and geomorphic context within and among watersheds in addition to site variables.
    Giedrė Kacienė, Jūratė Žaltauskaitė, Eglė Milčė, Romualdas Juknys
    2015, 8 (6): 605-616 .
    Abstract ( 145 )   PDF   Save
    Aims Oxidative stress is one of the most important mechanisms in a plant's reaction to the effects of different stressors; however, its role in plants' resistance is still poorly understood. The objective of this study is to evaluate an influence of oxidative stress induced by stress factors of different origin—ozone, ultraviolet (UV)-B radiation, drought, cadmium (Cd) and copper (Cu), to growth of spring barley and to check the hypothesis, that intensification of oxidative stress is the main factor of growth depression induced by strong treatments of different stressors; meanwhile, mitigation of oxidative stress determines eustress-induced growth stimulation.
    Methods A pot experiment was carried out in phytotron chambers with a controlled environment. Spring barley (Hordeum vulgare L.) plants were exposed to different doses of investigated environmental stress factors (O 3, UV-B radiation, drought, Cd and Cu), and their effects on shoots growth, accumulation of superoxide (O 2 .?), intensification of lipid peroxidation and antioxidative protection (superoxide dismutase, glutathione reductase and catalase activities and concentration of carotenoids) were measured. Analysis of variance (ANOVA) with classical eta-squared (η 2) values was used to evaluate and to compare the contribution of non-specific oxidative stress and stressor-specific mechanisms on plants growth.
    Important findings Low doses of most stressors stimulated antioxidative protection and growth of barley shoots, reduced the concentration of O 2 .? and/or intensity of lipid peroxidation. Whereas an impairment of growth and intensification of oxidative stress as well as a reduction in concentration of carotenoids and further increase in activity of antioxidative enzymes were noticed when the intensity of the stressors was increased. In the cases of ozone and UV-B stress, the effects of oxidative stress on plant growth was mitigated by strong antioxidative protection—highly increased catalase (CAT) and superoxide dismutase (SOD) activities, respectively. In the cases of drought and Cu, relatively strong oxidative stress was the major cause of plant growth depression. Additionally, mitigation of oxidative stress due to increased SOD activity was likely to be one of the main causes of growth stimulation induced by low doses of UV-B, Cd and Cu stress. Possible reasons for O 3 -induced growth stimulation were increased CAT activity and concentration of carotenoids. Generalizing the effects of different stressors, the contribution of non-specific oxidative stress on plant growth was stronger compared with stressor-specific action mechanisms: oxidative stress determined 42% of the changes in plants' dry biomass, whereas the contribution of stressor-specific mechanisms accounted for 35% of variability in barley growth.
    Li-Jia Dong, Zhen-Kai Sun, Yan Gao, Wei-Ming He
    2015, 8 (6): 617-622 .
    Abstract ( 161 )   PDF   Save
    Aims Plant–soil interaction (PSI) has been implicated as a causative mechanism promoting plant invasions, and some mechanisms underlying PSI effects remain unclear. Here, we attempted to address how altered soil microbes and nutrients influence PSI effects.
    Methods Soil was cultured by an invasive forb Solidago canadensis for two years. We conducted an experiment, in which S. canadensis and Chinese natives were grown either alone or together in control and cultured soils, and determined the growth of S. canadensis and five natives and the competitive ability of S. canadensis. We analyzed the microbial community composition and nutrients of two types of soils.
    Important findings Compared to the control soil, the soil cultured by S. canadensis decreased the subsequent growth of S. canadensis and five Chinese natives, as well as the competitive ability of S. canadensis against Chinese natives. Soil microbial community composition was significantly altered due to soil culturing. Total fatty acids, bacteria, Gram-negative bacteria and Gram-positive bacteria had no responses to soil culturing; fungi, aerobic bacteria and fungi/bacteria ratio significantly decreased with soil culturing; anaerobes and Gram-negative/positive bacteria ratio greatly increased with soil culturing. Soil nitrogen (N) dramatically decreased with soil culturing, whereas soil phosphorus (P) was unchanged. These results suggest that negative PSI effects may be linked to decreases in soil fungi, aerobic bacteria and soil N and increases in soil anaerobic bacteria and the ratio of Gram-negative/positive bacteria. Our findings provide an initial indication that S. canadensis– soil interaction alone could exhibit limited contributions to its success in the early stage of invasion.
    Cancan Zhao, Shenglei Fu, Reji P. Mathew, Kathy S. Lawrence, Yucheng Feng
    2015, 8 (6): 623-632 .
    Abstract ( 207 )   PDF   Save
    Aims Nitrogen (N) fertilization and lime addition may affect soil microbial and nematode communities and ecosystem functions through changing environmental conditions, such as soil pH and soil organic carbon. The objectives of this experiment were to examine the impact of N input and liming on soil microbial and nematode communities and to identify the key environmental determinant of community composition in a century-old fertilization and crop rotation experiment.
    Methods The field experiment consisting of a 3-year crop rotation regime was established in 1911 in southeastern USA. Four treatments, (i) no-input control, (ii) NPK with winter legume, (iii) PK with legume and lime and (iv) NPK with legume and lime, were included in this study. Soil samples collected at the 0–5cm depth were used to determine the bacterial growth rate by the 3 H-thymidine incorporation technique. Incorporation of 13 C into neutral lipids, glycolipids and phospholipid fatty acids (PLFAs) was measured after incubation of soil with 13 C-labeled acetate for 24h. Free-living nematodes in fresh soil were extracted using a density sucrose centrifugal flotation method and identified to trophic group level.
    Important findings Liming resulted in a 10-fold increase in bacterial growth rates compared with the no-input control, whereas N fertilization had no significant effect. Multivariate analysis of PLFA profiles showed that soil microbial community composition was different among the four treatments; the difference was primarily driven by soil pH. PLFAs indicative of Gram-negative bacteria covaried with soil pH, but not those of fungi and actinobacteria. Liming enhanced 13 C incorporation into neutral lipids, glycolipids and phospholipids by 2–15 times. In addition, 13 C incorporation into 16:0, 16:1ω9, 18:1ω9, 18:1ω7 and 18:2ω6 were greater than other PLFAs, suggesting that Gram-negative bacteria and fungi were more active and sensitive to simple C input. Bacterivorous nematodes were the dominant trophic group in the soil, but no significant differences in nematode communities were found among the treatments. Our results suggest that soil pH had a greater impact than N fertilization on soil microbial community composition and activity in a crop rotation system including legumes.
    Tong Jia, Tatsiana Shymanovich, Yu-Bao Gao, Stanley H. Faeth
    2015, 8 (6): 633-641 .
    Abstract ( 154 )   PDF   Save
    Aims In cool-season grasses, systemic and vertically transmitted Epichlo? infections often provide a suite of benefits including increased growth, reproduction and competitive abilities. However, these effects of Epichlo? endophytes on their hosts often depend upon host and endophyte genotype and environmental factors.
    Methods Achnatherum robustum (sleepygrass) harbors at least two Epichlo? species within natural populations in the Southwest USA. We tested the effects of endophyte infection and species, host population and plant genotype (by experimentally removing the endophyte), and soil moisture (a key limiting factor) on growth and drought stress response of infected A. robustum plants from two populations (Weed and Cloudcroft) in the Sacremento Mountains of New Mexico, USA).
    Important findings Although the two populations harbor distinct Epichlo? species each with very different chemoprofiles, neither endophyte status (infected vs. uninfected) nor endophyte species affected most growth parameters at 8 or 25 weeks of the experiment, except for leaf length. In high water treatment, infected plants from the Weed population had longer leaf length compared with uninfected plants. In contrast, the population of origin affected all growth parameters, including plant height, leaf number, length and width, tiller number and shoot and root biomass, as well as wilting time. Grasses from the Cloudcroft population generally showed greater growth than grasses from the Weed population. Endophyte infection did affect wilting time, with infection in the Weed population generally reducing time to wilting under low and high water, whereas infection in the Cloudcroft population reduced time to wilting only under high water conditions. Our results suggest that plant population and their associated plant genotypes may play a much larger role in endophyte–host grass interactions in varying environments than previously thought. Asexual Epichlo? species may be compatible with only specific host genotypes within populations such that the phenotypic effects due to population may be greater than phenotypic changes influenced by variation in the endophyte.
    Steffen Boch, Markus Fischer, Daniel Prati
    2015, 8 (6): 642-650 .
    Abstract ( 142 )   PDF   Save
    Aims The biochemical defense of lichens against herbivores and its relationship to lichen frequency are poorly understood. Therefore, we tested whether chemical compounds in lichens act as feeding defense or rather as stimulus for snail herbivory among lichens and whether experimental feeding by snails is related to lichen frequency in the field.
    Methods In a no-choice feeding experiment, we fed 24 lichen species to snails of two taxa from the Clausilidae and Enidae families and compared untreated lichens and lichens with compounds removed by acetone rinsing. Then, we related experimental lichen consumption with the frequency of lichen species among 158 forest plots in the field (Schw?bische Alb, Germany), where we had also sampled snail and lichen species.
    Important findings In five lichen species, snails preferred treated samples over untreated controls, indicating chemical feeding defense, and vice versa in two species, indicating chemical feeding stimulus. Interestingly, compared with less frequent lichen species, snails consumed more of untreated and less of treated samples of more frequent lichen species. Removing one outlier species resulted in the loss of a significant positive relationship when untreated samples were analyzed separately. However, the interaction between treatment and lichen frequency remained significant when excluding single species or including snail genus instead of taxa, indicating that our results were robust and that lumping the species to two taxa was justified. Our results imply lichen-feeding snails to prefer frequent lichens and avoid less frequent ones because of secondary compound recognition. This supports the idea that consumers adapt to the most abundant food source.
IF: 2.7
5-year IF: 2.6
Editors-in-Chief
Yuanhe Yang
Bernhard Schmid
CN 10-1172/Q
ISSN 1752-9921(print)
ISSN 1752-993X(online)