J Plant Ecol ›› 2019, Vol. 12 ›› Issue (3): 485-497.doi: 10.1093/jpe/rty041

• Research Articles • Previous Articles     Next Articles

Trends in extreme climatic indices across the temperate steppes of China from 1961 to 2013

Yang Li1,2,3, Yuhui Wang1,* and Jianmin Song1   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
    2 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    3 University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
    *Correspondence address. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China. Tel: +86-10-62836509; Fax: +86-10-82595962; E-mail: yhwang@ibcas.ac.cn
  • Received:2018-02-05 Revised:2018-09-23 Accepted:2018-10-20 Online:2019-05-15 Published:2019-07-01



Extreme climate events have become more severe and frequent with global change in recent years. The Chinese temperate steppes are an important component of the Eurasian steppes and highly sensitive and vulnerable to climatic change. As a result, the occurrence of extreme climate events must have strong impacts on the temperate steppes. Therefore, understanding the spatio-temporal trends in extreme climate is important for us to assess the sensitivity and vulnerability of Chinese temperate steppes to climatic changes. This research had two specific objects to (i) specify the temporal changes in extreme climate events across the whole steppe and (ii) compare the trend differences for extreme climate events in different types of steppes—meadow steppe, typical steppe and desert steppe.


To investigate extreme climate trends in the temperate steppes of China, 82 meteorological stations with daily temperature and precipitation data (1961–2013) were used. Meanwhile, eight core extreme climate indices (extreme high-temperature threshold, extreme low-temperature threshold, frost days, heatwave duration, heavy rainfall threshold, percentage of heavy rainfall, heavy rainfall days and consecutive dry days) from the Statistical and Regional Dynamical Downscaling of Extremes for European Regions (STARDEX) project were selected to analyse the trends in extreme climate across the whole temperate steppe and the three main types (meadow steppe, typical steppe and desert steppe) through time and space.

Important Findings

The results showed that (i) the changes in extreme climatic temperature events across the whole temperate steppe were obvious during 1961–2013. The frost days (?3.40 days/10 year [yr]) decreased significantly, while the extreme high-temperature threshold (0.24°C/10 yr), extreme low-temperature threshold (0.52°C/10 yr), and heatwave duration (0.58 days/10 yr) increased notably. The annual changes in extreme precipitation were small and not significant. (ii) Differences appeared in the extreme climatic trends in different types of steppes. The desert steppe showed strong climate extremes and underwent the most significant asymmetric warming compared with the meadow steppe and typical steppe. At the same time, the heatwave duration (0.62 days/10 yr) increased. In terms of the extreme precipitation, there was no significant trend among the three types of steppes. However, the fluctuations in extreme precipitation were the largest in the desert steppe compared to those in the typical steppe and meadow steppe.

Key words: trend, extreme climatic indices, temperate steppe, extreme precipitation, extreme temperature

[1] Zhilu Sheng, Yongmei Huang, Kejian He, Narigele Borjigin, Hanyue Yang, Huiying Chen, Engui Li, Xia Xu and Lei Duan. Responses of plant 15N natural abundance and isotopic fractionation to N addition reflect the N status of a temperate steppe in China [J]. J Plant Ecol, 2019, 12(3): 550-563.
[2] Yongkai Luo, Huifeng Hu, Mengying Zhao, He Li, Shangshi Liu and Jingyun Fang. Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China [J]. J Plant Ecol, 2019, 12(1): 67-77.
[3] Xiao-Yue Wang, Qiu-Mei Quan, Bo Wang, Yun-Xiang Li, Shuang-Quan Huang. Discovery of androecium color polymorphism in Epimedium pubescens with habitat preference of anther/pollen color in the genus [J]. J Plant Ecol, 2018, 11(4): 533-541.
Full text



[1] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[2] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[3] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[4] Mei Bai;Hong Wu*. Recent Progress in Lipid Biosynthesis Regulated by TAG1 in Arabidopsis thaliana[J]. Chin Bull Bot, 2009, 44(06): 735 -741 .
[5] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[6] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[7] Pengtao Wang, Jing Zhao, Huanhuan Yu. Reactive Oxygen Species Signaling in Stomata[J]. Chin Bull Bot, 2014, 49(4): 490 -503 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .