J Plant Ecol ›› 2018, Vol. 11 ›› Issue (1): 17-25.doi: 10.1093/jpe/rtx031

• Review • Previous Articles     Next Articles

Invasive European frogbit (Hydrocharis morsus-ranae L.) in North America: an updated review 2003-16

Bin Zhu1,*, Cora C. Ottaviani1, Rahmat Naddafi2, Zhicong Dai3 and Daolin Du3   

  1. 1 Department of Biology, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, USA; 2 Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, 74242 ?regrund, Uppsala County, Sweden; 3 Institute of Environment and Ecology, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
  • Received:2017-05-02 Accepted:2017-04-29 Online:2018-01-19 Published:2018-01-18
  • Contact: Zhu, Bin E-mail:zhu@hartford.edu

Abstract: Aims European frogbit (Hydrocharis morsus-ranae L.) is an aquatic plant originating from Europe that has emerged as an invasive species, spreading in the USA and Canada since it was first brought to North America in 1932. It can now be found in many water bodies, from small ponds and long rivers to large lakes such as Lake Ontario and Lake Erie. The continuous spread of this species indicates its success as an invasive species despite legislative attempts to limit its distribution. Catling et al. (Catling PM, Miltrow G, Haber E, et al. (2003) The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can J Plant Sci 83:1001–16) wrote a thorough review about this invasive species in North America. Our review aims for a compilation of the most recent available data and recent studies on H. morsus-ranae L. and focuses primarily on its environmental uses, ecological impacts and management. The purpose of this review is to offer an organized and updated report on European frogbit that can be used towards future studies with the goal of eradicating this invasive species and providing insights on management of other invasive plants.
Important findings Our findings reveal that European forgbit's ecological effects on other species and the invaded environment were shown to be less harmful than previously feared. European frogbit had negative impacts on native plants and reduced dissolved oxygen concentration. However, water chemistry, phytoplankton and zooplankton communities were actually not affected by European frogbit. For fungi, bacteria and macroinvertebrates, studies have showed complex and sometimes conflicting results. We also specifically discussed the new method to control this species using shading and the more recent studies on biological control. Shading with a shade cloth has been shown to effectively remove European frogbit and had minor environmental effects. However, using biological control to combat the spread of the invasive frogbit seems not as successful as we wished.

Key words: European frogbit, invasive plants, ecological impacts, biological control, shading

摘要:
Aims European frogbit (Hydrocharis morsus-ranae L.) is an aquatic plant originating from Europe that has emerged as an invasive species, spreading in the USA and Canada since it was first brought to North America in 1932. It can now be found in many water bodies, from small ponds and long rivers to large lakes such as Lake Ontario and Lake Erie. The continuous spread of this species indicates its success as an invasive species despite legislative attempts to limit its distribution. Catling et al. (Catling PM, Miltrow G, Haber E, et al. (2003) The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can J Plant Sci 83:1001–16) wrote a thorough review about this invasive species in North America. Our review aims for a compilation of the most recent available data and recent studies on H. morsus-ranae L. and focuses primarily on its environmental uses, ecological impacts and management. The purpose of this review is to offer an organized and updated report on European frogbit that can be used towards future studies with the goal of eradicating this invasive species and providing insights on management of other invasive plants.
Important findings Our findings reveal that European forgbit's ecological effects on other species and the invaded environment were shown to be less harmful than previously feared. European frogbit had negative impacts on native plants and reduced dissolved oxygen concentration. However, water chemistry, phytoplankton and zooplankton communities were actually not affected by European frogbit. For fungi, bacteria and macroinvertebrates, studies have showed complex and sometimes conflicting results. We also specifically discussed the new method to control this species using shading and the more recent studies on biological control. Shading with a shade cloth has been shown to effectively remove European frogbit and had minor environmental effects. However, using biological control to combat the spread of the invasive frogbit seems not as successful as we wished.

[1] Margherita Gioria, Petr Pyšek, Bruce A. Osborne. Timing is everything: does early and late germination favor invasions by herbaceous alien plants? [J]. J Plant Ecol, 2018, 11(1): 4-16.
[2] Lara G. Reichmann, Susanne Schwinning, H. Wayne Polley, Philip A. Fay. Traits of an invasive grass conferring an early growth advantage over native grasses [J]. J Plant Ecol, 2016, 9(6): 672-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .