Journal of Plant Ecology

• •    下一篇

老龄锐齿槲栎具有更灵活的水分吸收策略

  

  • 收稿日期:2025-05-25 接受日期:2025-12-20

Older Quercus aliena stands have a more flexible water absorption strategy than younger counterparts

Ranran Rena,b, Qing Xua*, Wenbin Xua, Ying Zhangc, Deqiang Gaoa, Haijun Zuoa, Ke Diaoa   

  1. a Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
    b Shandong Academy of Forestry, Jinan 250014, Shandong, China
    c Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, Shandong, China
    *Corresponding author:Dr. Qing Xu, Email:xuqing@caf.ac.cn
    Dr. Beibei Zhang, Email:zhangbb@caf.ac.cn
  • Received:2025-05-25 Accepted:2025-12-20
  • Supported by:
    This research was funded by the National Nonprofit Institute Research Grant of CAF (CAFYBB2021ZE002; CAFYBB2024MA013; CAFYBB2020SY025) and National Key Research and Development Program of China (2021YFD2200401).

摘要: 树木水分利用策略是驱动森林生产力的重要影响因子。在全球降水格局变化背景下,不同林龄树木的水分吸收策略可能存在差异。因此,探究不同林龄树木的吸水特征对于预测降水变化背景下森林生长状况至关重要。然而,目前关于不同林龄树木吸水策略对降水变化的响应仍不清楚。为此,本研究基于δD和δ18O同位素技术,结合贝叶斯混合模型(MixSIAR),解析了不同量级降水事件(7.4 mm、19.6mm及30.1 mm)发生后,40-60年、60-90年、120-150年及>150年的锐齿槲栎水分利用特征。结果表明,小雨(7.4 mm)后,四种林龄锐齿槲栎林的水分利用格局无显著差异。但是,在中雨(19.6 mm)及大雨(30.1 mm)后,60-90年(48.6 ± 3.4%)、120-150年(30.4 ± 6.6%)和>150年(53.6 ± 7.6%)锐齿槲栎林对表层土壤(0-20 cm)水分的吸收比例显著高于40-60年(15.2 ± 1.5%)锐齿槲栎林,而对深层土壤(20-100 cm)水分的利用则呈现相反趋势。进一步地,结构方程模型的结果表明,根系生物量是调控锐齿槲栎水分吸收策略的主要驱动因子,土壤含水量和土壤结构间接影响了其水分利用。上述结果意味着,老龄锐齿槲栎通过调整吸水策略表现出更强的环境适应能力。

关键词: δD, δ18O, 不同林龄锐齿槲栎林, 水分利用策略, 降水量级

Abstract: The water absorption strategies of trees exert crucial roles in shaping forest productivity. As global precipitation changes, older trees in response to water stress may be different to younger trees. Hence, it is essential to explore the water absorption of different stand- aged trees for predicting their growth status under the changes in precipitation pattern. Up to now, the water absorption strategies between older and younger trees responding to different magnitudes of precipitation remain unclear. Here, we used the δD and δ18O connected with Bayesian mixture model (MixSIAR) to calculate the water absorption strategies of Quercus aliena stands growing for 40-60 years, 60-90 years, 120-150 years and >150 years following three precipitation events (7.4, 19.6 and 30.1 mm). We found no difference in the water absorption of Q. aliena among these four different aged forests after small precipitation (7.4 mm). By comparison, under moderate (19.6 mm) and heavy (30.1 mm) precipitation, the ratios of water absorption from the topsoil (0-20 cm) by 60-90 years (48.6 ± 3.4%), 120-150 years (30.4 ± 6.6%) and >150 years (53.6 ± 7.6%) of Q. aliena stands were significantly higher than those growing for 40-60 years (15.2 ± 1.5%) based on one-way ANOVA, while the opposite pattern appeared in the subsoil layers (20-100 cm). Furthermore, the structural equation model showed that root biomass primarily drove the water absorption strategies of Q. aliena. These findings imply that older Q. aliena stands exhibit more flexible water absorption strategies than their relatively younger counterparts following different precipitation, reflecting their stronger adaptability to the changed climate.

Key words: δD, δ18O, different aged forests, water absorption strategy, precipitation events