Jiangshan Lai1,2,3*, Yan He1,2, Mi Hou1,2, Guochun Shen4,5, Wenyong Guo4,5, Lingfeng Mao1,2*
1Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
2Research Center of Quantitative Ecology, Nanjing Forestry University, Nanjing 210037, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming & Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
5Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhoushan, 316111, 12 China
*Corresponding authors: lai@njfu.edu.cn (J.L.) or maolingfeng2008@163.com (L.M.)
摘要: 生态学数据中常常表现出空间自相关性,即在地理位置上相近的采样单元在物种分布、群落组成或环境属性方面的相似性往往高于随机预期。空间自回归模型(SARs)通过显式地引入空间依赖关系来解决这一问题。然而,在存在多重共线性的情况下,区分空间结构与生态预测变量的相对贡献仍然具有挑战性。新R包spatialreg.hp将“平均共享方差”(ASV)的概念扩展到了SAR模型,使得可以将模型总R²分解为空间变量与非空间变量的独特贡献和共享贡献。该包能够精确地计算空间效应与环境变量的单个R²值,并确保其和完全等于模型的总R²,从而为预测因子的重要性提供了一种新的度量方式。我们通过基于经典空间数据集的案例研究展示了该包的功能。spatialreg.hp将为生态学者和地理学者在生态建模中量化空间过程与环境因子之间的作用提供了一种新的框架。