Journal of Plant Ecology ›› 2025, Vol. 18 ›› Issue (1): 1-20.DOI: 10.1093/jpe/rtaf003

• •    

气候和演化历史共同塑造了全球被子植物木材密度的纬度梯度格局

  

  • 收稿日期:2024-10-28 接受日期:2024-12-04 出版日期:2025-02-01 发布日期:2025-06-14

Climate and evolutionary history shape latitudinal patterns of angiosperm wood density

Kilara Waris1, Markku Larjavaara1,2, Ao Luo1, Tong Lyu1,3, Yaoqi Li1,4, Wen Jia1 and Zhiheng Wang1,*   

  1. 1Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    2Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland
    3Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    4Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

    *Corresponding author. E-mail: zhiheng.wang@pku.edu.cn
  • Received:2024-10-28 Accepted:2024-12-04 Online:2025-02-01 Published:2025-06-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (32125026, 31988102) and the National Key Research Development Program of China (2022YFF0802300).

摘要: 木材密度不仅可以指示重要的植物功能,而且也能够通过影响木材降解来调控森林生态系统中的碳循环过程。然而,目前木材密度在全球范围内的地理格局及其在被子植物演化历史中的演变过程仍不明确。为此,我们通过整合全球被子植物的木材密度数据、系统发育数据以及物种分布数据,估算了全球木材密度的时空格局及其与现代气候和古气候之间的关系。研究结果发现每个地理单元内的平均木材密度在北半球随纬度的增加而降低,在南半球则呈现随纬度增加而升高的趋势。与之相反,木材密度在每个地理单元内的种间变异并没有呈现清晰的纬度梯度。全球平均木材密度的地理格局主要受温度主导,其中,平均木材密度在高温地区之间的地理变异可能是年降水和降水季节性的变异所致。自新生代以来(66百万年前(Million years ago,Mya)至今),木材密度先是随时间增加,并从大约20 Mya开始呈现随时间下降的趋势。总的来说,新生代以来的木材密度与古温度呈正相关,与古降水则呈负相关,尤其是在较为干旱的历史时期。不同大陆木材密度的演化趋势存在差异,这与木材密度的地理格局及其与现代气候之间的关系在不同大陆间的分异相对应。我们的研究结果显示,环境温度主导了全球被子植物木材密度的地理变异,同时降水季节性也对木材密度的地理变异有重要影响。上述研究还表明,干旱和生物地理特性在驱动被子植物木材密度的演化中起到了关键作用。

关键词: 被子植物, 新生代, 全球变异, 现代气候, 古气候, 系统发育, 性状演化, 木材密度

Abstract: Wood density (WD) indicates important plant functions and plays a key role in carbon cycling of forest ecosystems by affecting wood decomposition. However, how WD varies globally and how it evolved through the evolutionary history of angiosperms remain unclear. Here, by integrating data of WD, phylogeny and distributions for angiosperms worldwide, we estimated global spatiotemporal patterns of WD and their relationships with modern climate and paleoclimate. We found that mean WD decreased with latitude in the northern hemisphere but increased with latitude in the southern hemisphere. The interspecific WD variation within each geographic unit did not show clear latitudinal gradients. Temperature was the best predictor of the global geographic pattern in mean WD, while the geographic variation in mean WD across high-temperature regions could be explained by geographic variation in precipitation and precipitation seasonality (PS). Since the Cenozoic (66 million years ago (Mya)), WD increased first (until 20 Mya) and then decreased. In general, the Cenozoic WD was positively correlated with paleotemperature and negatively correlated with paleoprecipitation, especially during more arid periods. Interestingly, the evolutionary trends of WD on different continents differed, which corresponded to the divergence in WD patterns and their relationships with modern climate on different continents. Our results highlight the dominant effect of environmental temperature on global variation in angiosperm WD with an additional strong effect of PS. Our study also demonstrates the critical role of aridity and biogeographic idiosyncrasies in driving angiosperm WD evolution.

Key words: angiosperms, Cenozoic, global variation,  modern climate, paleoclimate, phylogeny, trait evolution, wood density