Journal of Plant Ecology ›› 2024, Vol. 17 ›› Issue (5): 1-15.DOI: 10.1093/jpe/rtae039

• •    

基于Boruta和Cubist方法的中国南方两种针叶林林分参数的估算

  

  • 收稿日期:2023-12-26 接受日期:2024-04-16 出版日期:2024-10-01 发布日期:2024-07-10

Optimizing crown density and volume estimation across two coniferous forest types in southern China via Boruta and Cubist methods

Zhi-Dan Ding, Zhao Sun, Yun-Hong Xie, Jing-Jing Qiao, Rui-Ting Liang, Xin Chen, Khadim Hussain and Yu-Jun Sun*   

  1. State Forestry & Grassland Administration Key Laboratory of Forest Resources & Environmental Management, Beijing Forestry University, Beijing 100083, China

    *Corresponding author. E-mail: sunyj@bjfu.edu.cn

  • Received:2023-12-26 Accepted:2024-04-16 Online:2024-10-01 Published:2024-07-10
  • Supported by:
    This research was supported by the project of the National Technology Extension Fund of Forestry, ‘Forest Vegetation Carbon Storage Monitoring Technology Based on Watershed Algorithm’ ([2019]06) and the National Natural Science Foundation of China, ‘Study on Crown Models for Larix olgensis Based on Tree Growth’ (31870620).

摘要: 林分参数是林业调查和生态环境监测中不可或缺的因子,也是研究森林结构和了解森林资源的重要参数。郁闭度和蓄积量的估测一直是林业遥感研究的热点方向。本研究以福建省将乐国有林场为研究区,以杉木(Cunninghamia lanceolata (Lamb.) Hook.)和马尾松(Pinus massoniana Lamb.)为研究对象,基于高分二号(GF-2)遥感数据、样地调查数据以及森林资源二类调查数据,引入Boruta特征选择算法,结合多元逐步和Cubist回归模型,对研究区部分区域的林分郁闭度和每公顷蓄积量进行估算,为探索林分参数估测提供新的技术方法。结果表明,使用Boruta算法可以选择出与因变量相关性最强的特征集合,将其用于建模会优于使用所有特征建模,不仅解决了数据冗余问题,而且避免降维后的原始特征数据缺失。运用Cubist方法进行模型构建,均得到比多元逐步回归更优的效果。其中,在杉木样地中,Cubist回归模型的决定系数R2均在0.67以上;在马尾松样地中,Cubist回归模型的决定系数R2均在0.63以上。上述结果表明,两种方法的结合使用,可以提高林分参数的估测精度,为后续研究提供理论依据和技术支撑。

关键词: 高分二号, Boruta特征选择, Cubist回归模型, 林分参数估测, 遥感估测

Abstract: Quantifying forest stand parameters is crucial in forestry research and environmental monitoring because it provides important factors for analyzing forest structure and comprehending forest resources. And the estimation of crown density and volume has always been a prominent topic in forestry remote sensing. Based on GF-2 remote sensing data, sample plot survey data and forest resource survey data, this study used the Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Pinus massoniana Lamb. as research objects to tackle the key challenges in the use of remote sensing technology. The Boruta feature selection technique, together with multiple stepwise and Cubist regression models, was used to estimate crown density and volume in portions of the research area’s stands, introducing novel technological methods for estimating stand parameters. The results show that: (i) the Boruta algorithm is effective at selecting the feature set with the strongest correlation with the dependent variable, which solves the problem of data and the loss of original feature data after dimensionality reduction; (ii) using the Cubist method to build the model yields better results than using multiple stepwise regression. The Cubist regression model’s coefficient of determination (R2) is all more than 0.67 in the Chinese fir plots and 0.63 in the P. massoniana plots. As a result, combining the two methods can increase the estimation accuracy of stand parameters, providing a theoretical foundation and technical support for future studies.

Key words: GF-2 image,  Boruta feature selection, Cubist regression model, estimation of stand parameters, remote sensing estimation