Journal of Plant Ecology ›› 2022, Vol. 15 ›› Issue (6): 1257-1272.DOI: 10.1093/jpe/rtac023

• • 上一篇    下一篇

  

  • 收稿日期:2021-06-21 修回日期:2021-10-09 接受日期:2021-11-12 出版日期:2022-12-01 发布日期:2022-12-08

Effects of seed morphology and orientation on secondary seed dispersal by wind

Jinlei Zhu* , Carsten M. Buchmann and Frank M. Schurr   

  1. 1 Institute of Landscape and Plant Ecology, University of Hohenheim, 70599 Stuttgart, Germany

    * Corresponding author. E-mail: jinlei.zhu@uni-hohenheim.de
  • Received:2021-06-21 Revised:2021-10-09 Accepted:2021-11-12 Online:2022-12-01 Published:2022-12-08

摘要:

传播体形态与方位对二次种子风力传播的影响

理解传播体形态与方位如何影响二次种子风力传播对联系种子传播与传播后的各种过程如种子停留、种子捕食与种子萌发具有重要意义。本研究以机理模型定量描述了传播体形态与方位对二次种子风力传播的影响。我们拓展了由Schurr等(2005)开发的机理模型,并描述了二次种子风力传播如何受风信状况、地表特征及传播体形态与方位的影响。拓展后的模型模拟传播体降落至地表后的初始方位、传播距离及传播体在地表停止运动后的方位分布。为了参数化模型,我们选取具有传播体异型性的植物霸王(Zygophyllum xanthoxylon)的形态不对称的传播体为研究对象,测量了对应不同传播体方位的传播体垂直高度和传播体启动风速(使静止传播体开始运动的阈值风速),确定了对应不同传播体方位的、依赖于传播体属性与环境特征的模型参数。为了验证模型,我们开展了风洞实验,将霸王传播体释放到表面覆沙的沥青毡上,记录各个传播体降落至地表后的初始方位、传播距离及传播体在地表停止运动后的方位分布。拓展的模型可精确预测二次种子风力传播距离,可解释高达99%的传播体停止运动后的方位分布变异。模型预测二次传播距离随风速增加而增加,随下垫面粗糙度增加而降低。模型预测种子传播距离与种子萌发间存在权衡关系。

关键词: 霸王(Zygophyllum xanthoxylon),  传播体异型性,  机理模型,  二次种子风力传播,  传播体方位,  风滚草,  具翼种子

Abstract:

Understanding how diaspore (hereafter ‘seed’) morphology and orientation affect secondary seed dispersal by wind is important to link seed dispersal and post-dispersal processes, such as seed lodging, predation and germination. This study aims to describe the effects of seed morphology and orientation on secondary seed dispersal by wind via mechanistic modelling. We extend the mechanistic model of Schurr et al. (2005) in order to describe how secondary seed dispersal by wind is affected by wind conditions, ground surface, seed morphology and orientation. The model simulates the initial landing orientations, dispersal distances and stopping orientations of individual seeds. To parameterize the model, we measured orientation-specific vertical seed projection and seed lift-off velocity (the wind speed at which a seed starts moving on the ground) of the asymmetric seeds of heterocarpous Zygophyllum xanthoxylon, and determined orientation-specific model parameters that depend on properties of seeds and/or the environment. To validate the model, we conducted wind channel experiments in which we released seeds of Z. xanthoxylon onto a sand-coated tar paper, and recorded the initial landing orientations, dispersal distances and stopping orientations of the seeds. The extended model could precisely predict secondary dispersal distance, and explain up to 99% of variation in the observed proportions of seeds which stopped in various orientations. The model predicts that secondary dispersal distance increases with wind speed and decreases with aerodynamic roughness length, and that there might be a positive correlation between dispersal distance and germination success.

Key words: Zygophyllum xanthoxyllon,  heterodiaspory,  mechanistic modelling,  phase II dispersal,  seed orientation,  tumbleweed,  winged seed