%A Joseph K. Brown, Julie C. Zinnert, Donald R. Young %T Emergent interactions influence functional traits and success of dune building ecosystem engineers %0 Journal Article %D 2018 %J J Plant Ecol %R 10.1093/jpe/rtx033 %P 524-532 %V 11 %N 4 %U {https://www.jpe.ac.cn/CN/abstract/article_29002.shtml} %8 2018-05-23 %X Aims Dune building processes are affected by interactions between the growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and sea spray. Research investigating how species interactions influence dune community structure and functional trait responses in high abiotic stress environments is minimal. We investigated how species interactions influence the functional trait responses of three dominant dune grasses to common abiotic stressors.
Methods We performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata Fern., Uniola paniculata L. and Spartina patens Muhl.) in different interspecific combinations, using sand burial and sea spray as abiotic stressors. Sand burial was applied once at the beginning of the study. Sea spray was applied three times per week using a calibrated spray bottle. Morphological functional trait measurements (leaf elongation, maximum root length, aboveground biomass and belowground biomass) were collected at the end of the study. The experiment continued from May 2015 to August 2015.
Important findings Species interactions between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata, indicating that interactions with U. paniculata could alter dune community structure. Furthermore, A. breviligulata had a negative interaction with S. patens, which decreased S. patens functional trait responses to abiotic stress. When all species occurred together, the interactions among species brought about coexistence of all three species. Our data suggest that species interactions can change traditional functional trait responses of dominant species to abiotic stress.