J Plant Ecol ›› 2018, Vol. 11 ›› Issue (2): 189-199 .DOI: 10.1093/jpe/rtw124

• Research Articles • Previous Articles     Next Articles

Evidence for fine-scale habitat specialisation in an invasive weed

Daniel Z. Atwater1,*, Rebecca A. Fletcher1, Christopher C. Dickinson1, Andrew H. Paterson2 and Jacob N. Barney1   

  1. 1 Virginia Tech, Department of Plant Pathology, Physiology and Weed Science, 435 Old Glade Road, Blacksburg, VA 24061, USA; 2 University of Georgia, Plant Genome Mapping Laboratory, 111 Riverbend Road, Athens, GA 30606, USA
  • Received:2016-07-15 Accepted:2016-11-08 Published:2018-02-06
  • Contact: Atwater, Daniel

Evidence for fine-scale habitat specialisation in an invasive weed

Abstract: Aims As an exotic species colonises a new continent, it must overcome enormous environmental variation in its introduced range. Local adaptation of introduced species has frequently been observed at the continent scale, particularly in response to latitudinal climatic variation. However, significant environmental heterogeneity can also exist at the landscape scale. A small number of studies have provided evidence that introduced species may also be capable of phenotypic and genetic differentiation at much smaller spatial scales. For example, previously we found US agricultural and non-agricultural populations of Sorghum halepense (Johnsongrass) to be phenotypically and genetically distinct. In this study, we investigated whether this phenotypic differentiation of agricultural and non-agricultural populations of S. halepense is the result of fine-scale local specialisation.
Methods We surveyed a nationally collected S. halepense germplasm panel and also collected neighbouring agricultural and non-agricultural sub-populations of S. halepense at four sites throughout Western Virginia, USA, raising seedlings in common conditions mimicking both agricultural and non-agricultural habitats.
Important findings At the national scale, we found evidence of habitat differentiation but not specialisation. However, at the local scale, we found evidence of specialisation in two of the four local populations to non-agricultural habitat, but no evidence of specialisation to agricultural habitat. These results show that local specialisation is a possible, but not guaranteed consequence of kilometre-scale habitat heterogeneity in invasive species. This finding contributes to a growing awareness of the importance of fine-scale local adaptation in the ecology and management of introduced and weedy species.

Key words: Johnsongrass, local adaptation, rapid evolution, Sorghum halepense (L.)

摘要:
Aims As an exotic species colonises a new continent, it must overcome enormous environmental variation in its introduced range. Local adaptation of introduced species has frequently been observed at the continent scale, particularly in response to latitudinal climatic variation. However, significant environmental heterogeneity can also exist at the landscape scale. A small number of studies have provided evidence that introduced species may also be capable of phenotypic and genetic differentiation at much smaller spatial scales. For example, previously we found US agricultural and non-agricultural populations of Sorghum halepense (Johnsongrass) to be phenotypically and genetically distinct. In this study, we investigated whether this phenotypic differentiation of agricultural and non-agricultural populations of S. halepense is the result of fine-scale local specialisation.
Methods We surveyed a nationally collected S. halepense germplasm panel and also collected neighbouring agricultural and non-agricultural sub-populations of S. halepense at four sites throughout Western Virginia, USA, raising seedlings in common conditions mimicking both agricultural and non-agricultural habitats.
Important findings At the national scale, we found evidence of habitat differentiation but not specialisation. However, at the local scale, we found evidence of specialisation in two of the four local populations to non-agricultural habitat, but no evidence of specialisation to agricultural habitat. These results show that local specialisation is a possible, but not guaranteed consequence of kilometre-scale habitat heterogeneity in invasive species. This finding contributes to a growing awareness of the importance of fine-scale local adaptation in the ecology and management of introduced and weedy species.