J Plant Ecol ›› 2014, Vol. 7 ›› Issue (2): 176-187 .DOI: 10.1093/jpe/rtt071

• Research Articles • Previous Articles     Next Articles

Phylogenetic diversity stabilizes community biomass

Zhichao Pu1, Poonim Daya2, Jiaqi Tan1 and Lin Jiang1,*   

  1. 1 School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA; 2 Division of Biology, California Institute of Technology, 1300 E California Boulevard, Pasadena, CA 91126, USA
  • Received:2013-03-07 Accepted:2013-12-21 Published:2014-03-26
  • Contact: Jiang, Lin

Phylogenetic diversity stabilizes community biomass

Abstract: Aims The relationship between biodiversity and ecological stability is a long-standing issue in ecology. Current diversity–stability studies, which have largely focused on species diversity, often report an increase in the stability of aggregate community properties with increasing species diversity. Few studies have examined the linkage between phylogenetic diversity, another important dimension of biodiversity, and stability. By taking species evolutionary history into account, phylogenetic diversity may better capture the diversity of traits and niches of species in a community than species diversity and better relate to temporal stability. In this study, we investigated whether phylogenetic diversity could affect temporal stability of community biomass independent of species diversity.
Methods We performed an experiment in laboratory microcosms with a pool of 12 bacterivorous ciliated protist species. To eliminate the possibility of species diversity effects confounding with phylogenetic diversity effects, we assembled communities that had the same number of species but varied in the level of phylogenetic diversity. Weekly disturbance, in the form of short-term temperature shock, was imposed on each microcosm and species abundances were monitored over time. We examined the relationship between temporal stability of community biomass and phylogenetic diversity and evaluated the role of several stabilizing mechanisms for explaining the influence of phylogenetic diversity on temporal stability.
Important findings Our results showed that increasing phylogenetic diversity promoted temporal stability of community biomass. Both total community biomass and summed variances showed a U-shaped relationship with phylogenetic diversity, driven by the presence of large, competitively superior species that attained large biomass and high temporal variation in their biomass in both low and high phylogenetic diversity communities. Communities without these species showed patterns consistent with the reduced strength of competition and increasingly asynchronous species responses to environmental changes under higher phylogenetic diversity, two mechanisms that can drive positive diversity–stability relationships. These results support the utility of species phylogenetic knowledge for predicting ecosystem functions and their stability.

Key words: biodiversity, environmental fluctuation, the insurance effect, phylogenetic diversity, temporal stability

摘要:
Aims The relationship between biodiversity and ecological stability is a long-standing issue in ecology. Current diversity–stability studies, which have largely focused on species diversity, often report an increase in the stability of aggregate community properties with increasing species diversity. Few studies have examined the linkage between phylogenetic diversity, another important dimension of biodiversity, and stability. By taking species evolutionary history into account, phylogenetic diversity may better capture the diversity of traits and niches of species in a community than species diversity and better relate to temporal stability. In this study, we investigated whether phylogenetic diversity could affect temporal stability of community biomass independent of species diversity.
Methods We performed an experiment in laboratory microcosms with a pool of 12 bacterivorous ciliated protist species. To eliminate the possibility of species diversity effects confounding with phylogenetic diversity effects, we assembled communities that had the same number of species but varied in the level of phylogenetic diversity. Weekly disturbance, in the form of short-term temperature shock, was imposed on each microcosm and species abundances were monitored over time. We examined the relationship between temporal stability of community biomass and phylogenetic diversity and evaluated the role of several stabilizing mechanisms for explaining the influence of phylogenetic diversity on temporal stability.
Important findings Our results showed that increasing phylogenetic diversity promoted temporal stability of community biomass. Both total community biomass and summed variances showed a U-shaped relationship with phylogenetic diversity, driven by the presence of large, competitively superior species that attained large biomass and high temporal variation in their biomass in both low and high phylogenetic diversity communities. Communities without these species showed patterns consistent with the reduced strength of competition and increasingly asynchronous species responses to environmental changes under higher phylogenetic diversity, two mechanisms that can drive positive diversity–stability relationships. These results support the utility of species phylogenetic knowledge for predicting ecosystem functions and their stability.