J Plant Ecol ›› 2013, Vol. 6 ›› Issue (3): 201-210 .DOI: 10.1093/jpe/rts035

• Research Articles • Previous Articles     Next Articles

Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats

Robert J. Warren II1,* and Jeffrey K. Lake2   

  1. 1 Department of Biology, SUNY Buffalo State, 1300 Elmwood Avenue, Buffalo, NY 14222, USA; 2 Department of Biology, Adrian College, Adrian, MI, 49221, USA
  • Received:2012-05-13 Accepted:2012-10-13 Published:2013-05-22
  • Contact: Warren II, Robert

Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats

Abstract: Aims The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying abiotic conditions. Across the spectrum of plant types, shade-tolerant evergreen herbs are relatively low in trait plasticity, compared to deciduous and sun-adapted species. These plants employ stress-tolerant strategies for survival, which coincide with relatively static trait morphologies, slow growth and hence a lower ability to adjust to changing environmental conditions.
Methods We investigate how the survival of two ecologically similar understory evergreen species, Asarum arifolium and Hepatica nobilis, corresponds with variation in six commonly measured functional traits (leaf area, specific leaf area, plant height, leaf number, leaf length and shoot mass) along natural and experimental abiotic gradients. We examine temporal (the period 2007–9) and spatial (100 km) variations in these traits after (i) translocating 576 plants across a span from the southern Appalachian Mountains in NC, USA, to the Piedmont, GA, USA, which includes north- and south-facing slope habitats and (ii) the experimental manipulation of diffuse light and soil moisture.
Important findings We find that when translocated into a novel habitats, with novel environmental conditions that often are more extreme than the source habitat, both species appear capable of considerable morphological acclimation and generally converge to similar trait values. Hepatica nobilis does not exhibit mean trait values particularly different from those of A. arifolium, but it demonstrates much greater phenotypic plasticity. These results indicate that relatively conservative plant species nonetheless acclimate and survive across heterogeneous environmental conditions.

Key words: Functional traits, Asarum arifolium, Hepatica nobilis, niche, specific leaf area, understory

摘要:
Aims The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying abiotic conditions. Across the spectrum of plant types, shade-tolerant evergreen herbs are relatively low in trait plasticity, compared to deciduous and sun-adapted species. These plants employ stress-tolerant strategies for survival, which coincide with relatively static trait morphologies, slow growth and hence a lower ability to adjust to changing environmental conditions.
Methods We investigate how the survival of two ecologically similar understory evergreen species, Asarum arifolium and Hepatica nobilis, corresponds with variation in six commonly measured functional traits (leaf area, specific leaf area, plant height, leaf number, leaf length and shoot mass) along natural and experimental abiotic gradients. We examine temporal (the period 2007–9) and spatial (100 km) variations in these traits after (i) translocating 576 plants across a span from the southern Appalachian Mountains in NC, USA, to the Piedmont, GA, USA, which includes north- and south-facing slope habitats and (ii) the experimental manipulation of diffuse light and soil moisture.
Important findings We find that when translocated into a novel habitats, with novel environmental conditions that often are more extreme than the source habitat, both species appear capable of considerable morphological acclimation and generally converge to similar trait values. Hepatica nobilis does not exhibit mean trait values particularly different from those of A. arifolium, but it demonstrates much greater phenotypic plasticity. These results indicate that relatively conservative plant species nonetheless acclimate and survive across heterogeneous environmental conditions.