J Plant Ecol ›› 2010, Vol. 3 ›› Issue (1): 17-24 .DOI: 10.1093/jpe/rtp029

• Research Articles • Previous Articles     Next Articles

UV light spectral response of photosynthetic photochemical efficiency in alpine mosses

Wei Ren1, Hongchao Tan1, Jing Wu1, Yongcui Deng1, Yibo Wu1, Yanhong Tang2 and Xiaoyong Cui1,*   

  1. 1 College of Resources and Environment, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; 2 National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
  • Received:2009-09-09 Accepted:2009-11-11 Published:2010-02-19
  • Contact: Cui, Xiaoyong

UV light spectral response of photosynthetic photochemical efficiency in alpine mosses

Abstract: Aims Bryophytes play an important role in primary production in harsh alpine environment. As other alpine plants, the alpine bryophytes are often exposed to stronger UV radiation than lowland plants. Plants growing under high UV radiation may differ from those from low UV regimes in their physiological response to UV radiation. We were to (i) test the hypothesis and to address whether and/or how alpine bryophytes differ in photosynthetic photochemical characteristics in response to UV light and (ii) understand the potential effects of UV radiation on photosynthetic photochemical process in alpine bryophytes.
Methods We examined the maximum quantum efficiency of photosystem II (PSII) photochemistry (F v /F m) for two alpine bryophyte species, Distichium inclinatum and Encalypta alpine, from a Kobresia humilis meadow and a Kobresia tibetica wetland, respectively, in Haibei, Qinghai (37°29′N, 101°12′E, altitude 3?250 m), and for a lowland bryophyte, Polytrichum juniperinum, under different spectrum of UV light. Biological spectral weighting function (BSWF) was obtained to evaluate the effect of UV light on the physiological response in these species.
Important findings1)?The maximum quantum efficiency of photosystem II photochemistry (F v /F m) declined linearly with the increase of radiation dose in wavelengths from 250 to 420 nm. The effect of UV radiation on F v /F m decreased with higher rate from 250 to 320 nm and from 400 to 420 nm than in UVA range. 2)?The three species from different ecosystems contrasting in altitudes showed similar pattern of UV effectiveness. In comparison with other species reported so far, the moss BSWF was among those with the most modest decrease trend with spectrum effect of UV light 50 times higher at 250 than at 420 nm. 3)?Under the scenario of 16% reduction of stratospheric ozone, the integrated effectiveness from 290 to 345 nm increased only 5%, suggesting that the photochemical activity of the bryophyte PSII is likely to insensitive to O 3 depletion.

Key words: action spectrum, bryophyte, ozone, Tibetan Plateau, ultraviolet radiation

摘要:
Aims Bryophytes play an important role in primary production in harsh alpine environment. As other alpine plants, the alpine bryophytes are often exposed to stronger UV radiation than lowland plants. Plants growing under high UV radiation may differ from those from low UV regimes in their physiological response to UV radiation. We were to (i) test the hypothesis and to address whether and/or how alpine bryophytes differ in photosynthetic photochemical characteristics in response to UV light and (ii) understand the potential effects of UV radiation on photosynthetic photochemical process in alpine bryophytes.
Methods We examined the maximum quantum efficiency of photosystem II (PSII) photochemistry (F v /F m) for two alpine bryophyte species, Distichium inclinatum and Encalypta alpine, from a Kobresia humilis meadow and a Kobresia tibetica wetland, respectively, in Haibei, Qinghai (37°29′N, 101°12′E, altitude 3?250 m), and for a lowland bryophyte, Polytrichum juniperinum, under different spectrum of UV light. Biological spectral weighting function (BSWF) was obtained to evaluate the effect of UV light on the physiological response in these species.
Important findings1)?The maximum quantum efficiency of photosystem II photochemistry (F v /F m) declined linearly with the increase of radiation dose in wavelengths from 250 to 420 nm. The effect of UV radiation on F v /F m decreased with higher rate from 250 to 320 nm and from 400 to 420 nm than in UVA range. 2)?The three species from different ecosystems contrasting in altitudes showed similar pattern of UV effectiveness. In comparison with other species reported so far, the moss BSWF was among those with the most modest decrease trend with spectrum effect of UV light 50 times higher at 250 than at 420 nm. 3)?Under the scenario of 16% reduction of stratospheric ozone, the integrated effectiveness from 290 to 345 nm increased only 5%, suggesting that the photochemical activity of the bryophyte PSII is likely to insensitive to O 3 depletion.